Refining best management practices (BMPs) for future highway construction depends on a comprehensive understanding of environmental impacts from current construction methods. Based on a before-after-control impact (BACI) experimental design, long-term stream monitoring (1997-2006) was conducted at upstream (as control, n = 3) and downstream (as impact, n = 6) sites in the Lost River watershed of the Mid-Atlantic Highlands region, West Virginia. Monitoring data were analyzed to assess impacts of during and after highway construction on 15 water quality parameters and macroinvertebrate condition using the West Virginia stream condition index (WVSCI). Principal components analysis (PCA) identified regional primary water quality variances, and paired t tests and time series analysis detected seven highway construction-impacted water quality parameters which were mainly associated with the second principal component. In particular, impacts on turbidity, total suspended solids, and total iron during construction, impacts on chloride and sulfate during and after construction, and impacts on acidity and nitrate after construction were observed at the downstream sites. The construction had statistically significant impacts on macroinvertebrate index scores (i.e., WVSCI) after construction, but did not change the overall good biological condition. Implementing BMPs that address those construction-impacted water quality parameters can be an effective mitigation strategy for future highway construction in this highlands region.
During a three-year study of two tributaries being crossed by a four-lane highway under construction in the eastern panhandle of West Virginia, we found little difference in the amount of fine sediment collected at upstream and downstream sites. The downstream site on one tributary collected significantly greater amounts of sediment in 2003, prior to installation of sediment fencing. Despite several episodic flow events that caused changes in the streambed, benthic macroinvertebrate metrics did not differ -significantly annually or seasonally between sites or between streams. On-site controls effectively checked new sedimentation, and benthic macroinvertebrates were not significantly impacted.
Highway construction in mountainous areas can result in sedimentation of streams, negatively impacting stream habitat, water quality, and biotic communities. We assessed the impacts of construction of a segment of Corridor H, a four-lane highway, in the Lost River watershed, West Virginia, by monitoring benthic macroinvertebrate communities and water quality, before, during, and after highway construction and prior to highway use at upstream and downstream sites from 1997 through 2007. Data analysis of temporal impacts of highway construction followed a BeforeAfter-Control-Impact (BACI) study design. Highway construction impacts included an increase in stream sedimentation during the construction phase. This was indicated by an increase in turbidity and total suspended solids. Benthic macroinvertebrate metrics indicated a community more tolerant during and after construction than in the period before construction. The percent of Chironomidae and the Hilsenhoff Biotic Index (HBI) increased, while percent of Ephemeroptera, Plecoptera, and Trichoptera (EPT) decreased. Our 10-year study addressed short-term impacts of highway construction and found that impacts were relatively minimal. A recovery of the number of EPT taxa collected after construction indicated that the benthic macroinvertebrate community may be recovering from impacts of highway construction. However, this study only addressed a period of 3 years before, 3 years during, and 4 years post construction. Inferences cannot be made concerning the long-term impacts of the highway, highway traffic, runoff, and other factors associated with highway use. Continual monitoring of the watershed is necessary to determine if the highway has a continual impact on stream habitat, water quality, and biotic integrity.
The goal of this review paper is to provide a list of methods and devices used to measure sediment accumulation in wadeable streams dominated by cobble and gravel substrate. Quantitative measures of stream sedimentation are useful to monitor and study anthropogenic impacts on stream biota, and stream sedimentation is measurable with multiple sampling methods. Evaluation of sedimentation can be made by measuring the concentration of suspended sediment, or turbidity, and by determining the amount of deposited sediment, or sedimentation on the streambed. Measurements of deposited sediments are more time consuming and labor intensive than measurements of suspended sediments. Traditional techniques for characterizing sediment composition in streams include core sampling, the shovel method, visual estimation along transects, and sediment traps. This paper provides a comprehensive review of methodology, devices that can be used, and techniques for processing and analyzing samples collected to aid researchers in choosing study design and equipment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.