Summary As the first line of defence against pathogens, cells mount an innate immune response, which is highly variable from cell to cell. The response must be potent yet carefully controlled to avoid self-damage. How these constraints have shaped the evolution of innate immunity remains poorly understood. Here, we characterise this programme’s transcriptional divergence between species and expression variability across cells. Using bulk and single-cell transcriptomics in fibroblasts and mononuclear phagocytes from different species, challenged with immune stimuli, we reveal a striking architecture of the innate immune response. Transcriptionally diverging genes, including cytokines and chemokines, vary across cells and have distinct promoter structures. Conversely, genes involved in response regulation, such as transcription factors and kinases, are conserved between species and display low cell-to-cell expression variability. We suggest that this unique expression pattern, observed across species and conditions, has evolved as a mechanism for fine-tuned regulation, achieving an effective but balanced response.
Chronic Obstructive Pulmonary Disease (COPD) is characterised by reduced lung function and is the third leading cause of death globally. Through genome-wide association discovery in 48,943 individuals, selected from extremes of the lung function distribution in UK Biobank, and follow-up in 95,375 individuals, we increased the yield of independent signals for lung function from 54 to 97. A genetic risk score was associated with COPD susceptibility (odds ratios per standard deviation of the risk score (~6 alleles) (95% confidence interval) 1.24 (1.20-1.27), P=5.05x10-49) and we observed a 3.7 fold difference in COPD risk between highest and lowest genetic risk score deciles in UK Biobank. The 97 signals show enrichment in development, elastic fibres and epigenetic regulation pathways. We highlight targets for drugs and compounds in development for COPD and asthma (genes in the inositol phosphate metabolism pathway and CHRM3) and describe targets for potential drug repositioning from other clinical indications.
In this study, 1,833 systemic sclerosis (SSc) cases and 3,466 controls were genotyped with the Immunochip array. Classical alleles, amino acid residues, and SNPs across the human leukocyte antigen (HLA) region were imputed and tested. These analyses resulted in a model composed of six polymorphic amino acid positions and seven SNPs that explained the observed significant associations in the region. In addition, a replication step comprising 4,017 SSc cases and 5,935 controls was carried out for several selected non-HLA variants, reaching a total of 5,850 cases and 9,401 controls of European ancestry. Following this strategy, we identified and validated three SSc risk loci, including DNASE1L3 at 3p14, the SCHIP1-IL12A locus at 3q25, and ATG5 at 6q21, as well as a suggested association of the TREH-DDX6 locus at 11q23. The associations of several previously reported SSc risk loci were validated and further refined, and the observed peak of association in PXK was related to DNASE1L3. Our study has increased the number of known genetic associations with SSc, provided further insight into the pleiotropic effects of shared autoimmune risk factors, and highlighted the power of dense mapping for detecting previously overlooked susceptibility loci.
Systemic sclerosis (SSc) is an autoimmune disease that shows one of the highest mortality rates among rheumatic diseases. We perform a large genome-wide association study (GWAS), and meta-analysis with previous GWASs, in 26,679 individuals and identify 27 independent genome-wide associated signals, including 13 new risk loci. The novel associations nearly double the number of genome-wide hits reported for SSc thus far. We define 95% credible sets of less than 5 likely causal variants in 12 loci. Additionally, we identify specific SSc subtype-associated signals. Functional analysis of high-priority variants shows the potential function of SSc signals, with the identification of 43 robust target genes through HiChIP. Our results point towards molecular pathways potentially involved in vasculopathy and fibrosis, two main hallmarks in SSc, and highlight the spectrum of critical cell types for the disease. This work supports a better understanding of the genetic basis of SSc and provides directions for future functional experiments.
We conducted a large-scale genetic analysis on giant cell arteritis (GCA), a polygenic immune-mediated vasculitis. A case-control cohort, comprising 1,651 case subjects with GCA and 15,306 unrelated control subjects from six different countries of European ancestry, was genotyped by the Immunochip array. We also imputed HLA data with a previously validated imputation method to perform a more comprehensive analysis of this genomic region. The strongest association signals were observed in the HLA region, with rs477515 representing the highest peak (p = 4.05 × 10(-40), OR = 1.73). A multivariate model including class II amino acids of HLA-DRβ1 and HLA-DQα1 and one class I amino acid of HLA-B explained most of the HLA association with GCA, consistent with previously reported associations of classical HLA alleles like HLA-DRB1(∗)04. An omnibus test on polymorphic amino acid positions highlighted DRβ1 13 (p = 4.08 × 10(-43)) and HLA-DQα1 47 (p = 4.02 × 10(-46)), 56, and 76 (both p = 1.84 × 10(-45)) as relevant positions for disease susceptibility. Outside the HLA region, the most significant loci included PTPN22 (rs2476601, p = 1.73 × 10(-6), OR = 1.38), LRRC32 (rs10160518, p = 4.39 × 10(-6), OR = 1.20), and REL (rs115674477, p = 1.10 × 10(-5), OR = 1.63). Our study provides evidence of a strong contribution of HLA class I and II molecules to susceptibility to GCA. In the non-HLA region, we confirmed a key role for the functional PTPN22 rs2476601 variant and proposed other putative risk loci for GCA involved in Th1, Th17, and Treg cell function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.