We identify three types of pointwise behaviour in the regularity of the (generalized) Rosenblatt process. This extends to a non Gaussian setting previous results known for the (fractional) Brownian motion. On this purpose, fine bounds on the increments of the Rosenblatt process are needed. Our analysis is essentially based on various wavelet methods.
The paper concerns the image, level and sojourn time sets associated with sample paths of the Rosenblatt process. We obtain results regarding the Hausdorff (both classical and macroscopic), packing and intermediate dimensions, and the logarithmic and pixel densities. As a preliminary step we also establish the time inversion property of the Rosenblatt process, as well as some technical points regarding the distribution of Z.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.