The functional organization of human emotion systems as well as their neuroanatomical basis and segregation in the brain remains unresolved. Here, we used pattern classification and hierarchical clustering to characterize the organization of a wide array of emotion categories in the human brain. We induced 14 emotions (6 ‘basic’, e.g. fear and anger; and 8 ‘non-basic’, e.g. shame and gratitude) and a neutral state using guided mental imagery while participants' brain activity was measured with functional magnetic resonance imaging (fMRI). Twelve out of 14 emotions could be reliably classified from the haemodynamic signals. All emotions engaged a multitude of brain areas, primarily in midline cortices including anterior and posterior cingulate gyri and precuneus, in subcortical regions, and in motor regions including cerebellum and premotor cortex. Similarity of subjective emotional experiences was associated with similarity of the corresponding neural activation patterns. We conclude that different basic and non-basic emotions have distinguishable neural bases characterized by specific, distributed activation patterns in widespread cortical and subcortical circuits. Regionally differentiated engagement of these circuits defines the unique neural activity pattern and the corresponding subjective feeling associated with each emotion.
The functional organization of human emotion systems as well as their neuroanatomical basis and segregation in the brain remains unresolved. Here we used pattern classification and hierarchical clustering to reveal and characterize the organization of discrete emotion categories in the human brain. We induced 14 emotions (6 "basic", such as fear and anger; and 8 "non-basic", such as shame and gratitude) and a neutral state in participants using guided mental imagery while their brain activity was measured with functional magnetic resonance imaging (fMRI). Twelve out of 14 emotions could be reliably classified from the fMRI signals. All emotions engaged a multitude of brain areas, primarily in midline cortices including anterior and posterior cingulate and precuneus, in subcortical regions, and in motor regions including cerebellum and premotor cortex. Similarity of subjective emotional experiences was associated with similarity of the corresponding neural activation patterns. We conclude that the emotions included in the study have discrete neural bases characterized by specific, distributed activation patterns in widespread cortical and subcortical circuits, and highlight both overlaps and differences in the locations of these for each emotion. Locally differentiated engagement of these globally shared circuits defines the unique neural fingerprint activity pattern and the corresponding subjective feeling associated with each emotion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.