Estradiol effects on memory depend on hormone levels and the interaction of different estrogen receptors within neural circuits. Estradiol induces gene transcription and rapid membrane signaling mediated by estrogen receptor-alpha (ERα), estrogen receptor-beta (ERβ), and a recently characterized G-protein coupled estrogen receptor, each with distinct distributions and ability to influence estradiol-dependent signaling. Investigations using receptor specific agonists suggest that all three receptors rapidly activate kinase-signaling and have complex dose-dependent influences on memory. Research employing receptor knockout mice demonstrate that ERα maintains transcription and memory as estradiol levels decline. This work indicates a regulatory role of ERβ in transcription and cognition, which depends on estradiol levels and the function of ERα. The regulatory role of ERβ is due in part to ERβ acting as a negative regulator of ERα-mediated transcription. Vector-mediated expression of estrogen receptors in the hippocampus provides an innovative research approach and suggests that memory depends on the relative expression of ERα and ERβ interacting with estradiol levels. Notably, the ability of estradiol to improve cognition declines with advanced age along with decreased expression of estrogen receptors. Thus, it will be important for future research to determine the mechanisms that regulate estrogen receptor expression during aging.
Drugs of abuse elevate dopamine levels in the nucleus accumbens (NAc) and alter transcriptional programs believed to promote long-lasting synaptic and behavioral adaptations. Here, we leveraged single-nucleus RNA-sequencing to generate a comprehensive molecular atlas of cell subtypes in the NAc, defining both sex-specific and cell type–specific responses to acute cocaine experience in a rat model system. Using this transcriptional map, we identified an immediate early gene expression program that is up-regulated following cocaine experience in vivo and dopamine receptor activation in vitro. Multiplexed induction of this gene program with a large-scale CRISPR-dCas9 activation strategy initiated a secondary synapse-centric transcriptional profile, altered striatal physiology in vitro, and enhanced cocaine sensitization in vivo. Together, these results define the transcriptional response to cocaine with cellular precision and demonstrate that drug-responsive gene programs can potentiate both physiological and behavioral adaptations to drugs of abuse.
CRISPR-based technology has provided new avenues to interrogate gene function, but difficulties in transgene expression in post-mitotic neurons has delayed incorporation of these tools in the central nervous system (CNS). Here, we demonstrate a highly efficient, neuron-optimized dual lentiviral CRISPR-based transcriptional activation (CRISPRa) system capable of robust, modular, and tunable gene induction and multiplexed gene regulation across several primary rodent neuron culture systems. CRISPRa targeting unique promoters in the complex multi-transcript gene brain-derived neurotrophic factor (Bdnf) revealed both transcript- and genome-level selectivity of this approach, in addition to highlighting downstream transcriptional and physiological consequences of Bdnf regulation. Finally, we illustrate that CRISPRa is highly efficient in vivo, resulting in increased protein levels of a target gene in diverse brain structures. Taken together, these results demonstrate that CRISPRa is an efficient and selective method to study gene expression programs in brain health and disease.
Drug addiction is a worldwide health problem, with overdose rates of both psychostimulants and opioids currently on the rise in many developed countries. Drugs of abuse elevate dopamine levels in the nucleus accumbens (NAc) and alter transcriptional programs believed to promote long-lasting synaptic and behavioral adaptations. However, even with well-studied drugs such as cocaine, druginduced transcriptional responses remain poorly understood due to the cellular heterogeneity of the NAc and complex drug actions via multiple neurotransmitter systems. Here, we leveraged highthroughput single-nucleus RNA-sequencing to create a comprehensive molecular atlas of cell subtypes in the NAc, defining both sex-specific and cell type-specific responses to acute cocaine experience in a rat model system. Using this transcriptional map, we identified specific neuronal subpopulations that are activated by cocaine, and defined an immediate early gene expression program that is upregulated following cocaine experience in vivo and dopamine (DA) receptor activation in vitro. To characterize the neuronal response to this DA-mediated gene expression signature, we engineered a large-scale CRISPR/dCas9 activation strategy to recreate this program. Multiplexed induction of this gene program initiated a secondary synapse-centric transcriptional profile, altered striatal physiology in vitro, and enhanced cocaine sensitization in vivo. Taken together, these results define the genome-wide transcriptional response to cocaine with cellular precision, and demonstrate that drug-responsive gene programs are sufficient to initiate both physiological and behavioral adaptations to drugs of abuse.NEARLY 5 MILLION Americans reported cocaine use in 2017, and recent increases in cocaine-related drug overdoses present significant public health challenges (1). A hallmark trait of drugs of abuse is the acute elevation of dopamine (DA) in the nucleus accumbens (NAc), a central integrator of the reward circuit (2-4). Abused drugs produce increases in DA that are greater in both concentration and duration than natural rewards (2,5,6), and this signaling is hypothesized to underlie maladaptive reinforcement after repeated drug use (7). Exposure to drugs of abuse results in significant transcriptional and epigenetic reorganization in the NAc (8-13), initiating synaptic and behavioral plasticity associated with the transition to drug addiction (7,14,15). However, even with well-studied drugs such as cocaine, drug-induced transcriptional responses remain poorly understood. This is in part due to the cellular heterogeneity of the NAc, which is a diverse structure containing multiple neuronal and non-neuronal subpopulations and complex neuronal circuitry. Additionally, many drugs of abuse engage multiple neurotransmitter systems in the NAc (16-22), and the specific contributions of DA-dependent transcriptional programs to neuronal physiology and behavior is not clear. Further, although drug experience leads to large scale transcriptional changes in the NAc, previou...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.