Many companies in the power transformer industry are striving to speed up the drying process of coatings, which is why alternative drying methods are constantly being explored while maintaining the same coating protection properties. The infrared (IR) drying of protective coatings is a potential solution for their higher productivity, but has not yet been extensively investigated. In this paper, two solvent-borne coating systems, with and without zinc in the primer, from two different manufacturers, dried by infrared radiation and under atmospheric conditions, were studied. The coating systems consisted of epoxy primer, epoxy intermediate coat, and polyurethane topcoat. Anti-corrosion performance of the coatings was characterized using a salt spray chamber, pull-off adhesion testing, electrochemical impedance spectroscopy (EIS) investigation, and open circuit potential (OCP) measurement. All samples were analyzed using stereo microscope. A scanning electron microscope (SEM) with energy-dispersive X-ray spectroscopy (EDX) for detailed study and chemical composition determination was used. The results showed that infrared technology notably reduced coating drying times while maintaining or improving anticorrosion performance properties compared to the coatings dried under atmospheric conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.