Rationale: Modulation of breathing by hypoxia accommodates variations in oxygen demand and supply during, for example, sleep and ascent to altitude, but the precise molecular mechanisms of this phenomenon remain controversial. Among the genes influenced by natural selection in high-altitude populations is one for the adenosine monophosphate-activated protein kinase (AMPK) a1-catalytic subunit, which governs cell-autonomous adaptations during metabolic stress.Objectives: We investigated whether AMPK-a1 and/or AMPK-a2 are required for the hypoxic ventilatory response and the mechanism of ventilatory dysfunctions arising from AMPK deficiency.Methods: We used plethysmography, electrophysiology, functional magnetic resonance imaging, and immediate early gene (c-fos) expression to assess the hypoxic ventilatory response of mice with conditional deletion of the AMPK-a1 and/or AMPK-a2 genes in catecholaminergic cells, which compose the hypoxia-responsive respiratory network from carotid body to brainstem.Measurements and Main Results: AMPK-a1 and AMPK-a2 deletion virtually abolished the hypoxic ventilatory response, and ventilatory depression during hypoxia was exacerbated under anesthesia. Rather than hyperventilating, mice lacking AMPK-a1 and AMPK-a2 exhibited hypoventilation and apnea during hypoxia, with the primary precipitant being loss of AMPK-a1 expression. However, the carotid bodies of AMPK-knockout mice remained exquisitely sensitive to hypoxia, contrary to the view that the hypoxic ventilatory response is determined solely by increased carotid body afferent input to the brainstem. Regardless, functional magnetic resonance imaging and c-fos expression revealed reduced activation by hypoxia of well-defined dorsal and ventral brainstem nuclei.Conclusions: AMPK is required to coordinate the activation by hypoxia of brainstem respiratory networks, and deficiencies in AMPK expression precipitate hypoventilation and apnea, even when carotid body afferent input is normal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.