Innovative biologics, including cell therapeutics, virus-like particles, exosomes,recombinant proteins, and peptides, seem likely to substitute monoclonal antibodies as the maintherapeutic entities in manufacturing over the next decades. This molecular variety causes agrowing need for a general change of methods as well as mindset in the process development stage,as there are no platform processes available such as those for monoclonal antibodies. Moreover,market competitiveness demands hyper-intensified processes, including accelerated decisionstoward batch or continuous operation of dedicated modular plant concepts. This indicates gaps inprocess comprehension, when operation windows need to be run at the edges of optimization. Inthis editorial, the authors review and assess potential methods and begin discussing possiblesolutions throughout the workflow, from process development through piloting to manufacturingoperation from their point of view and experience. Especially, the state-of-the-art for modeling inred biotechnology is assessed, clarifying differences and applications of statistical, rigorousphysical-chemical based models as well as cost modeling. “Digital-twins” are described and effortsvs. benefits for new applications exemplified, including the regulation-demanded QbD (quality bydesign) and PAT (process analytical technology) approaches towards digitalization or industry 4.0based on advanced process control strategies. Finally, an analysis of the obstacles and possiblesolutions for any successful and efficient industrialization of innovative methods from processdevelopment, through piloting to manufacturing, results in some recommendations. A centralquestion therefore requires attention: Considering that QbD and PAT have been required byauthorities since 2004, can any biologic manufacturing process be approved by the regulatoryagencies without being modeled by a “digital-twin” as part of the filing documentation?
Continuous manufacturing opens up new operation windows with improved product quality in contrast to documented lot deviations in batch or fed-batch operations. A more sophisticated process control strategy is needed to adjust operation parameters and keep product quality constant during long-term operations. In the present study, the applicability of a combination of spectroscopic methods was evaluated to enable Advanced Process Control (APC) in continuous manufacturing by Process Analytical Technology (PAT). In upstream processing (USP) and aqueous two-phase extraction (ATPE), Raman-, Fourier-transformed infrared (FTIR), fluorescence- and ultraviolet/visible- (UV/Vis) spectroscopy have been successfully applied for titer and purity prediction. Raman spectroscopy was the most versatile and robust method in USP, ATPE, and precipitation and is therefore recommended as primary PAT. In later process stages, the combination of UV/Vis and fluorescence spectroscopy was able to overcome difficulties in titer and purity prediction induced by overlapping side component spectra. Based on the developed spectroscopic predictions, dynamic control of unit operations was demonstrated in sophisticated simulation studies. A PAT development workflow for holistic process development was proposed.
An experimental feasibility study on continuous bioprocessing in pilot-scale of 1 L/day cell supernatant, that is, about 150 g/year product (monoclonal antibody) based on CHO (Chinese hamster ovary) cells for model validation is performed for about six weeks including preparation, start-up, batch, and continuous steady-state operation for at least two weeks stable operation as well as final analysis of purity and yield. A mean product concentration of around 0.4 g/L at cell densities of 25 × 106 cells/mL was achieved. After perfusion cultivation with alternating tangential flow filtration (ATF), an aqueous two-phase extraction (ATPE) followed by ultra-/diafiltration (UF/DF) towards a final integrated counter-current chromatography (iCCC) purification with an ion exchange (IEX) and a hydrophobic interaction (HIC) column prior to lyophilization were successfully operated. In accordance to prior studies, continuous operation is stable and feasible. Efforts of broadly-qualified operation personal as well as the need for an appropriate measurement and process control strategy is shown evidently.
The demand on biologics has been constantly rising over the past decades and has become crucial in modern medicine. Promising approaches to cope with widespread diseases like cancer and diabetes are gene therapy, plasmid DNA, virus-like particles, and exosomes. Due to progress that has been made in upstream processing (USP), difficulties arise in downstream processing and demand for innovative solutions. This work focuses on the integration of precipitation using a quality by design (QbD) approach for process development. Selective precipitation is achieved with PEG 4000 resulting in an HCP depletion of ≥80% respectively to IgG. Dissolution was executed with a sodium phosphate buffer (pH = 5/50 mM) reaching an IgG recovery of ≥95%. However, the central challenge in process development is still an optimal process design, which is transferable for a broad molecular variety of new products. This is where rigorous modeling becomes vital in order to generate digital twins to support early-stage process development and reduce the experimental overhead. Therefore, a model development and validation concept for construction of a process model for precipitation is also presented.
The integration of real time release testing into an advanced process control (APC) concept in combination with digital twins accelerates the process towards autonomous operation. In order to implement this, on the one hand, measurement technology is required that is capable of measuring relevant process data online, and on the other hand, a suitable model must be available to calculate new process parameters from this data, which are then used for process control. Therefore, the feasibility of online measurement techniques including Raman-spectroscopy, attenuated total reflection Fourier transformed infrared spectroscopy (ATR-FTIR), diode array detector (DAD) and fluorescence is demonstrated within the framework of the process analytical technology (PAT) initiative. The best result is achieved by Raman, which reliably detected mAb concentration (R2 of 0.93) and purity (R2 of 0.85) in real time, followed by DAD. Furthermore, the combination of DAD and Raman has been investigated, which provides a promising extension due to the orthogonal measurement methods and higher process robustness. The combination led to a prediction for concentration with a R2 of 0.90 ± 3.9% and for purity of 0.72 ± 4.9%. These data are used to run simulation studies to show the feasibility of process control with a suitable digital twin within the APC concept.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.