The C-type lectin receptors (CLRs) belong to a large family of proteins that contain a carbohydrate recognition domain (CRD) and calcium binding sites on their extracellular domains. Recent studies indicate that many CLRs, such as Dectin-1, Dectin-2 and Mincle, function as pattern recognition receptors (PRRs) recognizing carbohydrate ligands from infected microorganisms. Upon ligand binding, these CLRs induce multiple signal transduction cascades through their own immunoreceptor tyrosine-based activation motifs (ITAMs) or interacting with ITAM-containing adaptor proteins such as FcRc. Emerging evidence indicate that CLR-induced signaling cascades lead to the activation of nuclear factor kappaB (NF-kB) family of transcriptional factors through a Syk-and CARD9-dependent pathway(s). The activation of NF-kB plays a critical role in the induction of innate immune and inflammatory responses following microbial infection and tissue damages. In this review, we will summarize the recent progress on the signal transduction pathways induced by CLRs, and how these CLRs activate NF-kB and contribute to innate immune and inflammatory responses.
SUMMARY
Assembly of a scaffold consisting of CARD9, BCL10, and MALT1 (CBM complex) is critical for effective signaling by multiple pattern recognition receptors (PRRs) including Dectin and RIG-I. The RUN domain Beclin-1-interacting cysteine-rich-containing Rubicon protein associates constitutively with the Beclin-UVRAG-Vps34 complex under normal conditions to regulate autophagy. Rubicon also interacts with the phagocytic NADPH-oxidase complex upon TLR stimulation to induce potent antimicrobial responses. Here, we show Rubicon is a physiological feedback inhibitor of CBM-mediated PRR signaling, preventing unbalanced proinflammatory responses. Upon Dectin-1- or RIG-I-mediated activation, Rubicon dynamically exchanges binding partners from 14-3-3β to CARD9 in a stimulation-specific and phosphorylation-dependent manner, disassembling the CBM signaling complex and ultimately terminating PRR-induced cytokine production. Remarkably, Rubicon's actions in the autophagy complex, phagocytosis complex, and CBM complex are functionally and genetically separable. Rubicon thus differentially targets signaling complexes, depending on environmental stimuli, and may function to coordinate various immune responses against microbial infection.
The immune response to tumor can be enhanced by targeting costimulatory molecules on T cells. As the CD70-CD27 costimulatory axis plays an important role in the activation, survival and differentiation of lymphocytes, we have examined the efficacy of agonistic anti-CD27 antibodies as monotherapies for established melanoma in a murine model. We demonstrate that this approach leads to a substantial reduction in the outgrowth of both experimental lung metastases and sub-cutaneous tumors. Anti-CD27 treatment supports the maintenance of tumor-specific CD8 + T cells within the tumor, reduces the frequency of FoxP3-expressing CD4 + T cells within tumors, and potentiates the ability of NK1.1 + and CD8 + tumor infiltrating cells to secrete IFNγ upon coculture with tumor cells. The enhanced effector function correlated with lower levels of PD-1 expression on CD8 + T cells from anti-CD27 treated mice. Despite the modulating effect of anti-CD27 on multiple cell types, only CD8 + T cells were absolutely required for tumor control. CD4 + T cells were dispensable, while NK1.1 + cells were needed during early stages of tumor growth but not for the effectiveness of anti-CD27. Thus, CD27-mediated costimulation provides a potent boost to multiple aspects of the endogenous responses to tumor, and may be exploited to enhance tumor immunity.
The cytosolic proteins protein kinase Cθ (PKCθ), Bcl10, and Malt1 play critical roles in TCR signaling to the transcription factor NF-κB. Our data confirm that CD4+ T cells from PKCθ, Bcl10, and Malt1 knockout mice show severe impairment of proliferation in response to TCR stimulation. Unexpectedly, we find that knockout CD8+ T cells proliferate to a similar extent as wild-type cells in response to strong TCR signals, although a survival defect prevents their accumulation. Both CD4+ and CD8+ knockout T cells express activation markers, including CD25, following TCR stimulation. Addition of exogenous IL-2 rescues survival of knockout CD4+ and CD8+ T cells, but fails to overcome the proliferation defect of CD4+ T cells. CD4+ T cells from knockout mice are extremely deficient in TCR-induced NF-κB activation, whereas NF-κB activation is only partially impaired in CD8+ T cells. Overall, our results suggest that defects in TCR signaling through PKCθ, Bcl10, and Malt1 predominantly impair NF-κB activation and downstream functional responses of CD4+ T cells. In contrast, CD8+ T cells maintain substantial NF-κB signaling, implying the existence of a significant TCR-regulated NF-κB activation pathway in CD8+ T cells that is independent of PKCθ, Bcl10, and Malt1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.