This study dealt with the synthesis and characterization of thin transparent conducting films (TCF) from cellulose acetate (CA) blend and polyaniline (PANI). CA was produced from the pulp of abaca hybrid 7. CA-PANI films with different PANI loadings (0, 0.125, 0.25, 0.50, 1.0 and 2.0%) were produced using solvent casting method. Chemical transformations were analyzed using Fourier Transform Infrared (FTIR) spectroscopy. The conductivity was measured using the Four-Point Probe Test. Morphological characterization was done using Scanning Electron Microscopy (SEM). The transparency of the films was determined using UV-Vis Spectroscopy. FTIR spectra proved the embedment of PANI in the CA matrix. It was found that increasing the PANI loading increases the conductivity of the films but up to a certain limit. The highest average conductivity at 2.0264 x 10-5 S/m was observed in CA-PANI films with 0.50% PANI loading. SEM images revealed that conductivity is a function of PANI loading by forming networks. Further addition of PANI (1.0 and 2.0%) resulted to decreased conductivity due to agglomeration. Transparency, on the other hand, is negatively affected by PANI loading.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.