ObjectiveWe aim to analyse sex-specific differences in aortic valves (AVs) and valve interstitial cells (VICs) from aortic stenosis (AS) patients.Approach and Results238 patients with severe AS undergoing surgical valve replacement were recruited. Two hundred and two AVs (39.1% women) were used for ex vivo analyses and 36 AVs (33.3% women) for in vitro experiments. AVs from men presented increased levels of the inflammatory molecules interleukin (IL)-1β, IL-6, Rantes, and CD45. Oxidative stress (eNOS, myeloperoxidase, malondialdehyde and nitrotyrosine) was upregulated in male AVs. Concerning fibrosis, similar levels of collagen type I, decreased levels of collagen type III and enhanced fibronectin, active Lox-1 and syndecan-1 expressions were found in AVs from men compared with women. Extracellular matrix (ECM) remodeling was characterized by reduced metalloproteinase-1 and 9 expression and increased tissue inhibitor of metalloproteinase-2 expression in male AVs. Importantly, osteogenic markers (bone morphogenetic protein-9, Rank-L, osteopontin, periostin, osteocalcin and Sox-9) and apoptosis (Bax, Caspase 3, p53, and PARP1) were enhanced in AVs from men as compared to women. Isolated male VICs presented higher myofibroblast-like phenotype than female VICs. Male VICs exhibited increased inflammatory, oxidative stress, fibrotic, apoptosis and osteogenic differentiation markers.ConclusionsOur results suggest that the mechanisms driving the pathogenesis of AS could be different in men and women. Male AVs and isolated VICs presented more inflammation, oxidative stress, ECM remodeling and calcification as compared to those from women. A better knowledge of the pathophysiological pathways in AVs and VICs will allow the development of sex-specific options for the treatment of AS.
Rationale: Mitral valve prolapse (MVP) is one of the most common valvular disorders. However, the molecular and cellular mechanisms involved in fibromyxomatous changes in the mitral leaflet tissue have not been elucidated. Aldosterone (Aldo) promotes fibrosis in myocardium, and MR (mineralocorticoid receptor) antagonists (MRAs) improve cardiac function by decreasing cardiac fibrosis. Objective: We investigated the role of the Aldo/MR in the fibromyxomatous modifications associated with MVP. Methods and Results: Aldo enhanced valvular interstitial cell activation markers and induced endothelial-mesenchymal transition in valvular endothelial cells, resulting in increased proteoglycan secretion. MRA blocked all the above effects. Cytokine arrays showed CT-1 (cardiotrophin-1) to be a mediator of Aldo-induced valvular interstitial cell activation and proteoglycan secretion and CD (cluster of differentiation) 14 to be a mediator of Aldo-induced endothelial-mesenchymal transition and proteoglycan secretion in valvular endothelial cells. In an experimental mouse model of MVP generated by nordexfenfluramine administration, MRA treatment reduced mitral valve thickness and proteoglycan content. Endothelial-specific MR deletion prevented fibromyxomatous changes induced by nordexfenfluramine administration. Moreover, proteoglycan expression was slightly lower in the mitral valves of MVP patients treated with MRA. Conclusions: These findings demonstrate, for the first time, that the Aldo/MR pathway regulates the phenotypic, molecular, and histological changes of valvular interstitial cells and valvular endothelial cells associated with MVP development. MRA treatment appears to be a promising option to reduce fibromyxomatous alterations in MVP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.