The pathological accumulation of serous fluids in the pleural, peritoneal and pericardial space occurs in a variety of conditions. Since patient management depends on right and timely diagnosis, biochemical analysis of extravascular body fluids is considered a valuable tool in the patient management process.The biochemical evaluation of serous fluids includes the determination of gross appearance, differentiation of transudative from exudative effusions and additional specific biochemical testing to assess the effusion etiology. This article summarized data from the most relevant literature concerning practice with special emphasis on usefulness of biochemical tests used for the investigation of pleural, peritoneal and pericardial effusions. Additionally, preanalytical issues concerning serous fluid analysis were addressed and recommendations concerning acceptable analytical practice in serous fluid analysis were presented.
Blood gas analysis (BGA) is exposed to risks of errors caused by improper sampling, transport and storage conditions. The Clinical and Laboratory Standards Institute (CLSI) generated documents with recommendations for avoidance of potential errors caused by sample mishandling. Two main documents related to BGA issued by the CLSI are GP43-A4 (former H11-A4) Procedures for the collection of arterial blood specimens; approved standard – fourth edition, and C46-A2 Blood gas and pH analysis and related measurements; approved guideline – second edition. Practices related to processing of blood gas samples are not standardized in the Republic of Croatia. Each institution has its own protocol for ordering, collection and analysis of blood gases. Although many laboratories use state of the art analyzers, still many preanalytical procedures remain unchanged. The objective of the Croatian Society of Medical Biochemistry and Laboratory Medicine (CSMBLM) is to standardize the procedures for BGA based on CLSI recommendations. The Working Group for Blood Gas Testing as part of the Committee for the Scientific Professional Development of the CSMBLM prepared a set of recommended protocols for sampling, transport, storage and processing of blood gas samples based on relevant CLSI documents, relevant literature search and on the results of Croatian survey study on practices and policies in acid-base testing. Recommendations are intended for laboratory professionals and all healthcare workers involved in blood gas processing.
Diagnostic characteristics of ceruloplasmin, albumin, transferrin, thiols and MDA suggest their potential value as additional tools in disease diagnosis.
IntroductionPoor harmonization of critical results management is present in various laboratories and countries, including Croatia. We aimed to investigate procedures used in critical results reporting in Croatian medical biochemistry laboratories (MBLs).Materials and methodsAn anonymous questionnaire, consisting of 24 questions/statements, related to critical results reporting procedures, was send to managers of MBLs in Croatia. Participants were asked to declare the frequency of performing procedures and degree of agreement with statements about critical values reporting using a Likert scale. Total score and mean scores for corresponding separate statements divided according to health care setting were calculated and compared.ResultsResponses from 111 Croatian laboratories (48%) were analyzed. General practice laboratories (GPLs) more often re-analyzed the sample before reporting the critical result in comparison with the hospital laboratories (HLs) (score: 4.86 (4.75-4.96) vs. 4.49 (4.25-4.72); P = 0.001) and more often reported the critical value exclusively to the responsible physician compared to HLs (4.46 (4.29-4.64) vs. 3.76 (3.48-4.03), P < 0.001). High total score (4.69 (4.56-4.82)) was observed for selection of the critical results list issued by the Croatian Chamber of Medical Biochemistry (CCMB) indicating a high harmonization level for this aspect of critical result management. Low total scores were observed for the statements regarding data recording and documentation of critical result notification.ConclusionsDifferences in practices about critical results reporting between HLs and GPLs were found. The homogeneity of least favorable responses detected for data recording and documentation of critical results notification reflects the lack of specific national recommendations.
Reduction of PON1 activity observed in COPD patients could be partly caused by oxidative environment. Lower concentrations of reduced thiol groups in COPD patients suggest that a decrease in PON1 activity could reflect oxidative changes of enzyme free cysteine residues. Furthermore, decreased PON1 arylesterase activity might indicate a down-regulation of PON1 concentration. Our results suggest that ARE could be considered as potential biomarker for COPD diagnosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.