BackgroundPathological angiogenesis represents a critical issue in the progression of many diseases. Down syndrome is postulated to be a systemic anti-angiogenesis disease model, possibly due to increased expression of anti-angiogenic regulators on chromosome 21. The aim of our study was to elucidate some features of circulating endothelial progenitor cells in the context of this syndrome.MethodsCirculating endothelial progenitors of Down syndrome affected individuals were isolated, in vitro cultured and analyzed by confocal and transmission electron microscopy. ELISA was performed to measure SDF-1α plasma levels in Down syndrome and euploid individuals. Moreover, qRT-PCR was used to quantify expression levels of CXCL12 gene and of its receptor in progenitor cells. The functional impairment of Down progenitors was evaluated through their susceptibility to hydroperoxide-induced oxidative stress with BODIPY assay and the major vulnerability to the infection with human pathogens. The differential expression of crucial genes in Down progenitor cells was evaluated by microarray analysis.ResultsWe detected a marked decrease of progenitors' number in young Down individuals compared to euploid, cell size increase and some major detrimental morphological changes. Moreover, Down syndrome patients also exhibited decreased SDF-1α plasma levels and their progenitors had a reduced expression of SDF-1α encoding gene and of its membrane receptor. We further demonstrated that their progenitor cells are more susceptible to hydroperoxide-induced oxidative stress and infection with Bartonella henselae. Further, we observed that most of the differentially expressed genes belong to angiogenesis, immune response and inflammation pathways, and that infected progenitors with trisomy 21 have a more pronounced perturbation of immune response genes than infected euploid cells.ConclusionsOur data provide evidences for a reduced number and altered morphology of endothelial progenitor cells in Down syndrome, also showing the higher susceptibility to oxidative stress and to pathogen infection compared to euploid cells, thereby confirming the angiogenesis and immune response deficit observed in Down syndrome individuals.
Circulating endothelial progenitor cells (EPCs) play a significant role in neovascularization of ischaemic tissues and in re-endothelization of injured blood vessels. Identification of compounds able to enhance EPC levels and improve their functional activity, noticeably compromised by risk factors for coronary heart disease, is of clinical interest. This study evaluates the effects of red wine on EPCs. After being isolated from total peripheral blood mononuclear cells, EPC phenotype was confirmed by the presence of double positive cells for DiLDL uptake and lectin binding and by expression of CD34, CD133 and VE-cadherin cell surface markers. Long-term culture in the presence of red wine (1 microl/ml), containing resveratrol (Resv) at physiological concentration (nM), determined a time-dependent amelioration of cell number (P < 0.05). The presence of red wine prevented the TNF-alpha-induced reduction of EPC number (P < 0.05) and this effect was accompanied by reduced p38-phosphorylation expression levels (P < 0.05) and increased NOx levels (P < 0.05) Indeed, pure Resv alone significantly improved the TNF-alpha reduced EPC number (P < 0.05). This evidence indicates novel beneficial effects of red wine and Resv in the positive modulation of EPCs levels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.