Glioblastoma (GBM) is the most common malignant primary tumor of the central nervous system. With no effective therapy, the prognosis for patients is terrible poor. It is highly heterogeneous and EGFR amplification is its most frequent molecular alteration.In this light, we aimed to examine the genetic heterogeneity of GBM and to correlate it with the clinical characteristics of the patients. For that purpose, we analyzed the status of EGFR and the somatic copy number alterations (CNAs) of a set of tumor suppressor genes and oncogenes.Thus, we found GBMs with high level of EGFR amplification, low level and with no EGFR amplification. Highly amplified tumors showed histological features of aggressiveness. Interestingly, accumulation of CNAs, as a measure of tumor mutational burden, was frequent and significantly associated to shortened survival. EGFR-amplified GBMs displayed both a higher number of concrete CNAs and a higher global tumor mutational burden than their no EGFR-amplified counterparts. In addition to genetic changes previously described in GBM, we found PARK2 and LARGE1 CNAs associated to EGFR amplification. The set of genes analyzed allowed us to explore relevant signaling pathways on GBM. Both PARK2 and LARGE1 are related to receptor tyrosine kinase/PI3K/PTEN/AKT/mTOR-signaling pathway. Finally, we found an association between the molecular pathways altered, EGFR amplification and a poor outcome.Our results underline the potential interest of categorizing GBM according to their EGFR amplification level and the usefulness of assessing the tumor mutational burden. These approaches would open new knowledge possibilities related to GBM biology and therapy.
BackgroundThe molecular classification of gastric cancer recognises two subtypes prone to immune checkpoint blockade: the microsatellite unstable and the Epstein-Barr virus (EBV)-related tumours. We aim to assess the concordance between immunohistochemistry and PCR for microsatellite status evaluation, and explore the value of microsatellite instability (MSI) and EBV as predictive survival factors.Material and methodsWe collected 246 consecutively diagnosed gastric cancer cases in all stages and evaluated the microsatellite status using immunohistochemistry for mismatched repair (MMR) proteins and PCR. EBV expression was studied through in situ hybridisation.ResultsForty-five (18%) cases presented MSI and 13 (6%) were positive for EBV. MSI was associated with female sex, older age, distal location and distal non-diffuse type of the modified Lauren classification. EBV expression was most frequent in proximal location and proximal non-diffuse type. The sensitivity, specificity, positive predictive value and negative predictive value of immunohistochemistry for the microsatellite study were 91%, 98%, 91% and 98%, respectively. In the multivariate analysis, MSI was an independent predictor of favourable tumour-specific survival (TSS) in stages I–III (MSI: HR: 0.37, 95% CI 0.12 to 0.95, p=0.04).ConclusionsThe MSI status and the EBV expression should be incorporated in routine pathological report for two reasons. First, MSI defines a different pathological entity with a better outcome. Second, MSI and EBV may be useful biomarkers to identify patients who will respond to immune checkpoint blockade inhibitors. For this purpose, immunohistochemical study for MMR proteins and in situ hybridisation study for EBV evaluation are feasible and cost-effective methods.
CXCR4, CCR7 and CCR10 chemokine receptors are known to be involved in melanoma metastasis. Our goal was to compare the relative intratumoral mRNA expression of these receptors with that of their corresponding chemokine ligands, CXCL12, CCL19, CCL21, and CCL27 across the full spectrum of human melanoma progression: thin and thick primary melanomas, as well as "in transit", lymph node, and distant metastases. Expression was quantified by real-time RT-PCR in 103 melanoma samples: 51 primary tumors and 52 metastases. Particular emphasis was focused on chemokine ligand-receptor expression ratios. Immunohistochemistry was performed to identify the cell types expressing these molecules. CXCL12-CXCR4 and CCL27-CCR10 ratios were higher in thin than in thick primary melanomas, and all four chemokine-receptor ratios were higher in primary tumors than in melanoma metastases. CCL27-CCR10 and CXCL12-CXCR4 expression ratios in primary tumors were inversely associated with the development of distant metastases, and improved the predictive value of tumor thickness for distant metastasis, which is important since chemokine ligand-receptor ratios are not affected by the endogenous gene employed for normalizing mRNA expression. Both receptor and ligand immunolabeling were detected in neoplastic cells suggesting autocrine mechanisms. Our results support the concept that low CCL27/CCR10 and CXCL12/CXCR4 intratumoral mRNA ratios are associated with melanoma progression, and in combination with Breslow thickness, are the best predictive factors for the development of distant metastases in primary cutaneous melanoma.
Summary
Two patients are reported in whom early‐onset, distal papules with a histopathological diagnosis of basal cell carcinoma were the first manifestation of Gorlin syndrome (GS). These lesions showed no progression and remained stable through follow‐up. Two different PTCH1 gene mutations were detected in the two patients, and thus a phenotype–genotype correlation of this manifestation of GS was not possible.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.