A sensitive, accurate and rapid analysis of major nutrients in aquatic systems is essential for monitoring and maintaining healthy aquatic environments. In particular, monitoring ammonium (NH(4)(+)) concentrations is necessary for maintenance of many fish stocks, while accurate monitoring and regulation of ammonium, orthophosphate (PO(4)(3-)), silicate (Si(OH)(4)) and nitrate (NO(3)(-)) concentrations are required for regulating algae production. Monitoring of wastewater streams is also required for many aquaculture, municipal and industrial wastewater facilities to comply with local, state or federal water quality effluent regulations. Traditional methods for quantifying these nutrient concentrations often require laborious techniques or expensive specialized equipment making these analyses difficult. Here we present four alternative microcolorimetric assays that are based on a standard 96-well microplate format and microplate reader that simplify the quantification of each of these nutrients. Each method uses small sample volumes (200 µL), has a detection limit ≤ 1 µM in freshwater and ≤ 2 µM in saltwater, precision of at least 8% and compares favorably with standard analytical procedures. Routine use of these techniques in the laboratory and at an aquaculture facility to monitor nutrient concentrations associated with microalgae growth demonstrates that they are rapid, accurate and highly reproducible among different users. These techniques offer an alternative to standard nutrient analyses and because they are based on the standard 96-well format, they significantly decrease the cost and time of processing while maintaining high precision and sensitivity.
Marine phytoplankton have conserved elemental stoichiometry, but there can be significant deviations from this Redfield ratio. Moreover, phytoplankton allocate reduced carbon (C) to different biochemical pools based on nutritional status and light availability, adding complexity to this relationship. This allocation influences physiology, ecology, and biogeochemistry. Here, we present results on the physiological and biochemical properties of two evolutionarily distinct model marine phytoplankton, a diatom (cf. Staurosira sp. Ehrenberg) and a chlorophyte (Chlorella sp. M. Beijerinck) grown under light and nitrogen resource gradients to characterize how carbon is allocated under different energy and substrate conditions. We found that nitrogen (N)-replete growth rate increased monotonically with light until it reached a threshold intensity (~200 μmol photons · m(-2) · s(-1) ). For Chlorella sp., the nitrogen quota (pg · μm(-3) ) was greatest below this threshold, beyond which it was reduced by the effect of N-stress, while for Staurosira sp. there was no trend. Both species maintained constant maximum quantum yield of photosynthesis (mol C · mol photons(-1) ) over the range of light and N-gradients studied (although each species used different photophysiological strategies). In both species, C:chl a (g · g(-1) ) increased as a function of light and N-stress, while C:N (mol · mol(-1) ) and relative neutral lipid:C (rel. lipid · g(-1) ) were most strongly influenced by N-stress above the threshold light intensity. These results demonstrated that the interaction of substrate (N-availability) and energy gradients influenced C-allocation, and that general patterns of biochemical responses may be conserved among phytoplankton; they provided a framework for predicting phytoplankton biochemical composition in ecological, biogeochemical, or biotechnological applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.