Peri-operative SARS-CoV-2 infection increases postoperative mortality. The aim of this study was to determine the optimal duration of planned delay before surgery in patients who have had SARS-CoV-2 infection. This international, multicentre, prospective cohort study included patients undergoing elective or emergency surgery during October 2020. Surgical patients with pre-operative SARS-CoV-2 infection were compared with those without previous SARS-CoV-2 infection. The primary outcome measure was 30-day postoperative mortality. Logistic regression models were used to calculate adjusted 30-day mortality rates stratified by time from diagnosis of SARS-CoV-2 infection to surgery. Among 140,231 patients (116 countries), 3127 patients (2.2%) had a pre-operative SARS-CoV-2 diagnosis. Adjusted 30-day mortality in patients without SARS-CoV-2 infection was 1.5% (95%CI 1.4-1.5). In patients with a pre-operative SARS-CoV-2 diagnosis, mortality was increased in patients having surgery within 0-2 weeks, 3-4 weeks and 5-6 weeks of the diagnosis (odds ratio (95%CI) 4.1 (3.3-4.8), 3.9 (2.6-5.1) and 3.6 (2.0-5.2), respectively). Surgery performed ≥ 7 weeks after SARS-CoV-2 diagnosis was associated with a similar mortality risk to baseline (odds ratio (95%CI) 1.5 (0.9-2.1)). After a ≥ 7 week delay in undertaking surgery following SARS-CoV-2 infection, patients with ongoing symptoms had a higher mortality than patients whose symptoms had resolved or who had been asymptomatic (6.0% (95%CI 3.2-8.7) vs. 2.4% (95%CI 1.4-3.4) vs. 1.3% (95%CI 0.6-2.0), respectively). Where possible, surgery should be delayed for at least 7 weeks following SARS-CoV-2 infection. Patients with ongoing symptoms ≥ 7 weeks from diagnosis may benefit from further delay.
Over the decades, the Frozen Elephant Trunk (FET) technique has gained immense popularity allowing simplified treatment of complex aortic pathologies. FET is frequently used to treat aortic conditions involving the distal aortic arch and the proximal descending aorta in a single stage. Surgical preference has recently changed from FET procedures being performed at Zone 3 to Zone 2. There are several advantages of Zone 2 FET over Zone 3 FET including reduction in spinal cord injury, visceral ischemia, neurological and cardiovascular sequelae. In addition, Zone 2 FET is a technically less complicated procedure. Literature on the comparison between Zone 3 and Zone 2 FET is scarce and primarily observational and anecdotal. Therefore, further research is warranted in this paradigm to substantiate current surgical treatment options for complex aortic pathologies. In this review, we explore literature surrounding FET and the reasons for the shift in surgical preference from Zone 3 to Zone 2.
SARS-CoV-2 has been associated with an increased rate of venous thromboembolism in critically ill patients. Since surgical patients are already at higher risk of venous thromboembolism than general populations, this study aimed to determine if patients with peri-operative or prior SARS-CoV-2 were at further increased risk of venous thromboembolism. We conducted a planned sub-study and analysis from an international, multicentre, prospective cohort study of elective and emergency patients undergoing surgery during October 2020. Patients from all surgical specialties were included. The primary outcome measure was venous thromboembolism (pulmonary embolism or deep vein thrombosis) within 30 days of surgery. SARS-CoV-2 diagnosis was defined as peri-operative (7 days before to 30 days after surgery); recent (1-6 weeks before surgery); previous (≥7 weeks before surgery); or none. Information on prophylaxis regimens or pre-operative anti-coagulation for baseline comorbidities was not available. Postoperative venous thromboembolism rate was 0.5% (666/123,591) in patients without SARS-CoV-2; 2.2% (50/2317) in patients with peri-operative SARS-CoV-2; 1.6% (15/953) in patients with recent SARS-CoV-2; and 1.0% (11/1148) in patients with previous SARS-CoV-2. After adjustment for confounding factors, patients with peri-operative (adjusted odds ratio 1.5 (95%CI 1.1-2.0)) and recent SARS-CoV-2 (1.9 (95%CI 1.2-3.3)) remained at higher risk of venous thromboembolism, with a borderline finding in previous SARS-CoV-2 (1.7 (95%CI 0.9-3.0)). Overall, venous thromboembolism was independently associated with 30-day mortality ). In patients with SARS-CoV-2, mortality without venous thromboembolism was 7.4% (319/4342) and with venous thromboembolism was 40.8% (31/76). Patients undergoing surgery with peri-operative or recent SARS-CoV-2 appear to be at increased risk of postoperative venous thromboembolism compared with patients with no history of SARS-CoV-2 infection. Optimal venous thromboembolism prophylaxis and treatment are unknown in this cohort of patients, and these data should be interpreted accordingly.
Recent advances in the understanding of depression have led to increasing interest in ketamine and the role that N-methyl-d-aspartate (NMDA) receptor inhibition plays in depression. l-4-Chlorokynurenine (4-Cl-KYN, AV-101), a prodrug, has shown promise as an antidepressant in preclinical studies, but this promise has not been realized in recent clinical trials. We sought to determine if transporters in the CNS could be playing a role in this clinical response. We used radiolabeled uptake assays and microdialysis studies to determine how 4-Cl-KYN and its active metabolite, 7-chlorokynurenic acid (7-Cl-KYNA), cross the blood–brain barrier (BBB) to access the brain and its extracellular fluid compartment. Our data indicates that 4-Cl-KYN crosses the blood–brain barrier via the amino acid transporter LAT1 (SLC7A5) after which the 7-Cl-KYNA metabolite leaves the brain extracellular fluid via probenecid-sensitive organic anion transporters OAT1/3 (SLC22A6 and SLC22A8) and MRP4 (ABCC4). Microdialysis studies further validated our in vitro data, indicating that probenecid may be used to boost the bioavailability of 7-Cl-KYNA. Indeed, we found that coadministration of 4-Cl-KYN with probenecid caused a dose-dependent increase by as much as an 885-fold increase in 7-Cl-KYNA concentration in the prefrontal cortex. In summary, our data show that 4-Cl-KYN crosses the BBB using LAT1, while its active metabolite, 7-Cl-KYNA, is rapidly transported out of the brain via OAT1/3 and MRP4. We also identify a hitherto unreported mechanism by which the brain extracellular concentration of 7-Cl-KYNA may be increased to produce significant boosting of the drug concentration at its site of action that could potentially lead to an increased therapeutic effect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.