Background: Mucolipidosis Type IV is currently characterized as a lysosomal storage disorder with defects that include corneal clouding, achlorhydria and psychomotor retardation. MCOLN1, the gene responsible for this disease, encodes the protein mucolipin-1 that belongs to the "Transient Receptor Potential" family of proteins and has been shown to function as a non-selective cation channel whose activity is modulated by pH. Two cell biological defects that have been described in MLIV fibroblasts are a hyperacidification of lysosomes and a delay in the exit of lipids from lysosomes.
Mutations in MCOLN1, which encodes the protein h-mucolipin-1, result in the lysosomal storage disease Mucolipidosis Type IV. Studies on CUP-5, the human orthologue of h-mucolipin-1 in Caenorhabditis elegans, have shown that these proteins are required for lysosome biogenesis. We show here that the lethality in cup-5 mutant worms is due to two defects, starvation of embryonic cells and general developmental defects. Starvation leads to apoptosis through a CED-3-mediated pathway. We also show that providing worms with a lipid-soluble metabolite partially rescues the embryonic lethality but has no effect on the developmental defects, the major cause of the lethality. These results indicate that supplementing the metabolic deficiency of Mucolipidosis Type IV patients mat not be sufficient to alleviate the symptoms due to tissue degeneration.
Mutations in MCOLN1, which encodes the protein mucolipin 1, result in the lysosomal storage disease mucolipidosis Type IV. Studies on human mucolipin 1 and on CUP-5, the Caenorhabditis elegans ortholog of mucolipin 1, have shown that these proteins are required for lysosome biogenesis/function. Loss of CUP-5 results in a defect in lysosomal degradation, leading to embryonic lethality. We have identified a mutation in the ABC transporter MRP-4 that rescues the degradation defect and the corresponding lethality, owing to the absence of CUP-5. MRP-4 localizes to endocytic compartments and its levels are elevated in the absence of CUP-5. These results indicate that the lysosomal degradation defect is exacerbated in some cells because of the accumulation of MRP-4 in lysosomes rather than the loss of CUP-5 per se. We also show that under some conditions, loss of MRP-4 rescues the embryonic lethality caused by the loss of the cathepsin L protease, indicating that the accumulation of ABC transporters may be a more general mechanism whereby an initial lysosomal dysfunction is more severely compromised.
Plasma membrane Ca21 ATPases (PMCAs) maintain proper intracellular Ca 21 levels by extruding Ca 21 from the cytosol. PMCA genes and splice forms are expressed in tissue-specific patterns in vertebrates, suggesting that these isoforms may regulate specific biological processes. However, knockout mutants die as embryos or undergo cell death; thus, it is unclear whether other cell processes utilize PMCAs or whether these pumps are largely committed to the control of toxic levels of calcium. Here, we analyze the role of the PMCA gene, mca-3, in Caenorhabditis elegans. We report that partial lossof-function mutations disrupt clathrin-mediated endocytosis in a class of scavenger cells called coelomocytes. Moreover, components of early endocytic machinery are mislocalized in mca-3 mutants, including phosphatidylinositol-4,5-bisphosphate, clathrin and the Eps15 homology (EH) domain protein RME-1. This defect in endocytosis in the coelomocytes can be reversed by lowering calcium. Together, these data support a function for PMCAs in the regulation of endocytosis in the C. elegans coelomocytes. In addition, they suggest that endocytosis can be blocked by high calcium levels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.