The thermal properties of the mold influence the cooling situation in the injection molding process. While there are experimental studies investigating the influence of special mold materials, they are limited to few polymers. In this work, an extensive parameter study with the simulation software Autodesk Moldflow Insight was performed to analyze the influence of the polymer itself on the impact of the mold steel on cycle time and warpage. The investigated part was a box with two thickness variations. A conventional mold steel was compared with a steel grade featuring approximately double the thermal conductivity. Simulations were performed with 18 polymers covering the most common material families. The main finding of this study was that the influence of the higher mold conductivity on cycle time ranged from an almost negligible reduction (3%) up to a strong effect (24%), depending mainly on the used polymers, but also on the part thickness. For the cycle time reduction, a correlation was found, with the melt, mold and ejection temperature being the dominant influencing factors of the polymers. With this correlation, it was possible to estimate the potential of cycle time reduction for other polymers. The simulations also showed a positive influence of the higher mold thermal conductivity on part warpage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.