Bone morphogenetic protein (BMP) signaling is thought to perform multiple functions in the regulation of skin appendage morphogenesis and the postnatal growth of hair follicles. However, definitive genetic evidence for these roles has been lacking. Here, we show that Cre-mediated mutation of the gene encoding BMP receptor 1A in the surface epithelium and its derivatives causes arrest of tooth morphogenesis and lack of external hair. The hair shaft and hair follicle inner root sheath (IRS) fail to differentiate, and expression of the known transcriptional regulators of follicular differentiation Msx1,Msx2, Foxn1 and Gata3 is markedly downregulated or absent in mutant follicles. Lef1 expression is maintained, but nuclearβ-catenin is absent from the epithelium of severely affected mutant follicles, indicating that activation of the WNT pathway lies downstream of BMPR1A signaling in postnatal follicles. Mutant hair follicles fail to undergo programmed regression, and instead continue to proliferate, producing follicular cysts and matricomas. These results provide definitive genetic evidence that epithelial Bmpr1a is required for completion of tooth morphogenesis, and regulates terminal differentiation and proliferation in postnatal hair follicles.
During spinal cord development, distinct classes of interneurons arise at stereotypical locations along the dorsoventral axis. In this paper, we demonstrate that signaling through bone morphogenetic protein (BMP) type 1 receptors is required for the formation of two populations of commissural neurons, DI1 and DI2, that arise within the dorsal neural tube. We have generated a double knockout of both BMP type 1 receptors, Bmpr1a and Bmpr1b, in the neural tube. These double knockout mice demonstrate a complete loss of D1 progenitor cells, as evidenced by loss of Math1expression, and the subsequent failure to form differentiated DI1 interneurons. Furthermore, the DI2 interneuron population is profoundly reduced. The loss of these populations of cells results in a dorsal shift of the dorsal cell populations, DI3 and DI4. Other dorsal interneuron populations, DI5 and DI6, and ventral neurons appear unaffected by the loss of BMP signaling. The Bmpr double knockout animals demonstrate a reduction in the expression of Wnt and Id family members, suggesting that BMP signaling regulates expression of these factors in spinal cord development. These results provide genetic evidence that BMP signaling is crucial for the development of dorsal neuronal cell types.
Bone morphogenetic proteins have been implicated in the development of oligodendrocytes and astrocytes, however, a role for endogenous BMP signaling in glial development has not been demonstrated in a genetic model. Using mice in which signaling via type I BMP receptors Bmpr1a and Bmpr1b have been inactivated in the neural tube, we demonstrate that BMP signaling contributes to the maturation of glial cells in vivo. At P0, mutant mice exhibited a 25-40% decrease in GFAP+ or S100β+ astrocytes in the cervical spinal cord. The number of oligodendrocyte precursors and the timing of their emergence was unchanged in the mutant mice compared to the normals, however myelin protein expression and mature oligodendrocyte numbers were significantly reduced. These data indicate that BMP signaling promotes the generation of astrocytes and mature, myelinating oligodendrocytes in vivo but does not affect oligodendrocyte precursor development, thus suggesting tight regulation of BMP signaling to ensure proper gliogenesis.
The cerebellum has been a useful model for studying many aspects of neural development because of its relatively simple cytoarchitecture and developmental program. Yet, the genetic mechanisms underlying early differentiation and patterning of the cerebellum are still poorly characterized. Cell expression studies and culture experiments have suggested the importance of bone morphogenetic proteins (BMPs) in development of specific populations of cerebellar neurons. Here, we examined mice with targeted mutations in the BMP type I receptor genes Bmpr1a and Bmpr1b, to genetically test the hypothesis that BMPs play an inductive role in the embryogenesis of cerebellar granule cells. In Bmpr1a;Bmpr1b double knock-out mice, severe cerebellar patterning defects are observed resulting in smaller cerebella that are devoid of foliation. In mutants containing either single BMP receptor gene mutation alone, cerebellar histogenesis appears normal, thereby demonstrating functional redundancy of type I BMP receptors during cerebellar development. Loss of BMP signaling in double mutant animals leads to a dramatic reduction in the number of cerebellar granule cells and ectopic location of many of those that remain. Molecular markers of granule cell specification, including Math1 and Zic1, are drastically downregulated. In addition, Purkinje cells are disorganized and ectopically located, but they appear to be correctly specified. Consistent with the interpretation that granule cells alone are affected, phosphorylated Smad1/5/8 is immunolocalized predominantly to granule cell precursors and not appreciably detected in Purkinje cell precursors. This study demonstrates that BMP signaling plays a crucial role in the specification of granule cells during cerebellar development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.