Many problems in fluid mechanics and material sciences deal with liquid-vapour flows. In these flows, the ideal gas assumption is not accurate and the van der Waals equation of state is usually used. This equation of state is non-convex and causes the solution domain to have two hyperbolic regions separated by an elliptic region. Therefore, the governing equations of these flows have a mixed elliptic-hyperbolic nature. Numerical oscillations usually appear with standard finite-difference space discretization schemes, and they persist when the order of accuracy of the semi-discrete scheme is increased. In this study, we propose to use a new method called δ-ziti's method for solving the governing equations. This method gives a new class of semi discrete, high-order scheme which are entropy conservative if the viscosity term is neglected. We implement a high resolution scheme for our mixed type problems that select the same viscosity solution as the Lax Friederich scheme with higher resolution. Several tests have been carried out to compare our results with those of [6] [9] [16], in the same situations, we obtained the same results but faster thanks to the CFL condition which reaches 0.8 and the simplicity of the method. We consider three types of pressure in these tests: Cubic, Van der Waals and linear in pieces. The comparison proved that the δ-ziti's method respects the generalized Liu entropy conditions, e.g. the existence of a viscous profile.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.