Oat consumption is regarded as having significant health benefits. The enrichment of white salted noodles with oat flour would provide a potential health benefit but may affect the texture and sensory quality. Oat cultivars grown in Western Australia (Yallara, Kojonup, Mitika, Carrolup, and new line SV97181‐8) and a commercial oat variety were milled into flour and added to wheat flour at 10, 20, and 30% to produce oat‐enriched white salted noodles. The purpose of the study was to determine the quality characteristics of the oat flours and to assess the influence the oat flour blends had on noodle texture, color, and sensory characteristics. In addition, another goal was to determine whether the different oat cultivars had similar potential to provide health benefits by measuring the β‐glucan content before and after processing. The results indicated that protein, ash content, and noodle firmness increased with the increased percentage of oat flour in the noodle formulations, whereas the pasting properties of the noodle wheat–oat flour blends did not differ significantly. The color of raw noodle sheets and boiled noodles changed significantly with oat incorporation and resulted in lower lightness/brightness, higher redness, lower yellowness, and lower color stability in comparison to standard wheat white salted noodles. Noodles made with the lowest oat percentage (10%) scored highest for all sensory parameters and were significantly different in appearance, color, and overall acceptability compared with noodles made with 20 and 30% oat flour. The β‐glucan content of the flour blends increased with the increase in the level of oat incorporation but subsequently decreased during processing into noodles. The decrease in the β‐glucan content varied across the different oat cultivars and levels of incorporation into the noodles. A new oat cultivar, SV97181‐8, exhibited the least β‐glucan loss during processing. In this study, the quality characteristics of white salted noodles enriched with oat flour from Western Australian cultivars were determined to provide essential information for the commercial development of healthier noodles.
The enzyme lipoxygenase has a number of functions in breadmaking. Although white salted noodles are a staple food in various countries, the significance and potential of lipoxygenase in noodlemaking are less well understood. In these products a bright, uniform appearance is particularly important and so the aim of the present research has been to study the effect of endogenous and exogenous lipoxygenase upon discolouration of white salted noodles as well as on the textural and structural attributes. Similar lipoxygenase levels were recorded in the flours studied and no significant losses of activity were found during noodle manufacture and subsequent storage. Less discolouration occurred in treated noodle sheets compared with control samples. Discolouration happened to a lesser extent when samples were cooked immediately after preparation or drying for both treated and control noodles. Whiter noodle sheets were obtained when a soybean lipoxygenase was added to the formulation. Textural and structural properties of white salted noodles were not adversely affected by enzyme addition, giving firm, elastic and non-sticky products. It is concluded that the incorporation of the lipoxygenase preparation offers prospects for colour enhancement of white salted noodles.
This research compared the physicochemical properties of six milling oat cultivars from Western Australia over two growing seasons (2011 and 2012). Variations among the cultivars in physicochemical properties, particularly β‐glucan content, were assessed to determine their suitability for incorporation into white salted noodles at a level of 30% of the flour component. The average across six oat cultivars grown in 2012 was significantly higher (P < 0.05) for protein content, lipid content, and volume of smaller sized particles (<100 µm) and significantly lower for ash content, starch damage, and volume of larger particles (>100 µm) in comparison with the average across the same oat cultivars grown in 2011. The year of cultivation by cultivar interaction was significant (P < 0.05) for ash content, protein content, β‐glucan content, starch damage, and particle size. Oat cultivar Mitika had the highest peak viscosity for 100% oat flour (whole groat) and 30% oat–wheat (OW) flour blend, which may be owing to lower amylose percentage, high protein content, and greater volume of smaller particles. The effect of growing season had greater impact on OW noodle firmness than the genetic effect of cultivars. The eating and cooking quality attributes of OW noodles, such as color, color stability, firmness, and cooking solid loss were superior for those incorporated with 2012 oat flour (whole groat) compared with 2011 oat flour. Among the six oat cultivars, Williams produced noodles with poor cooking and eating quality, and Mitika was easier to handle during processing and produced noodles with superior brightness and color stability in comparison with other oat cultivars evaluated.
BackgroundWhite salted noodles (WSN) are made from a simple flour and water dough containing 1-5% salt (NaCl) based on flour weight. WSN are very popular in Japan, Korea, and China but represent only a small portion of the noodles produced in Southeast Asia. There are distinct differences in preferences for both color and eating properties of WSN noodles among consumers in China, Korea, and Japan, as well as regional differences within each country. In Japan, WSN are further classified based on the size of the noodle strands: very thin (so-men), thin (hiy-mugi), standard (udon), and flat (hira-men) (4). Standard udon noodles are very popular in Japan and are the most common fresh noodles made in Japan. The WSN described in this report refer to Japanese udon noodles.
The consumer acceptance of white salted Asian noodles depends on starch characteristics, and the purpose of this study has been to investigate the potential of exogenous α‐amylases to enhance textural characteristics of this product. Noodles were prepared from commercial flours with low α‐amylase activity, and the endogenous enzyme remained relatively stable during various processing and storage treatments. α‐Amylase preparations of bacterial origin and from barley malt were incorporated, and the products were assessed by texture analysis and electron microscopy, as well as for color characteristics. On addition of the amylase preparations, noodles were softer when texture was assessed using either a flat cylinder probe or an axial blade. Some discoloration occurred in treated noodle sheets, although this was minimal in final products that had been cooked immediately after preparation or following drying. Scanning electron microscopy confirmed that the α‐amylase of bacterial origin had greater impact upon starch than that from barley malt. The results have implications for understanding of the adverse impact of preharvest sprouting on product characteristics. The results show that softer noodles have been obtained at these levels of enzyme additions. This was true for both enzyme preparations used. Differences in hardness (as measured using the flat cylinder probe) were greater than those for firmness (as measured using the axial blade).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.