Warfarin-dosing algorithms incorporating CYP2C9 and VKORC1 ؊1639G>A improve dose prediction compared with algorithms based solely on clinical and demographic factors. However, these algorithms better capture dose variability among whites than Asians or blacks. Herein, we evaluate whether other VKORC1 polymorphisms and haplotypes explain additional variation in warfarin dose beyond that explained by VKORC1 ؊1639G>A among Asians (n ؍ 1103), blacks (n ؍ 670), and whites (n ؍ 3113).Participants were recruited from 11 countries as part of the International Warfarin Pharmacogenetics Consortium effort. Evaluation of the effects of individual VKORC1 single nucleotide polymorphisms (SNPs) and haplotypes on warfarin dose used both univariate and multivariable linear regression. VKORC1 ؊1639G>A and 1173C>T individually explained the greatest variance in dose in all 3 racial groups. Incorporation of additional VKORC1 SNPs or haplotypes did not further improve dose prediction.VKORC1 explained greater variability in dose among whites than blacks and Asians. Differences in the percentage of variance in dose explained by VKORC1 across race were largely accounted for by the frequency of the ؊1639A (or 1173T) allele. Thus, clinicians should recognize that, although at a population level, the contribution of VKORC1 toward dose requirements is higher in whites than in nonwhites; genotype predicts similar dose requirements across racial groups. (Blood. 2010;115(18):3827-3834) IntroductionWarfarin, the most commonly prescribed anticoagulant, exhibits large interpatient variability in dose requirements. Patient-specific factors (eg, age, body size, race, concurrent diseases, and medications) explain some of the variability in warfarin dose, but genetic factors influencing warfarin response explain a significantly higher proportion of the variability in dose. 1 Candidate-gene association studies 2-22 have identified 2 genes responsible for the main proportion of the genetic effect: CYP2C9, which codes for the enzyme cytochrome P450 2C9 that metabolizes S-warfarin, 23,24 and VKORC1, which codes for warfarin's target, vitamin K epoxide reductase. 25,26 The influence of CYP2C9 and VKORC1 has also been confirmed by genome-wide association studies among whites. 27,28 These studies suggest that identification of common variants in other genes exhibiting influence of magnitude similar to that of CYP2C9 and VKORC1 is unlikely in whites. The most influential CYP2C9 polymorphisms are nonsynonymous coding variants resulting in reduced enzyme activity and decreased metabolic capacity. [29][30][31] In contrast, common VKORC1 variants associated with warfarin dose are noncoding polymorphisms, the effects of which are thought to be mediated through differential expression of the VKOR protein. 32 These polymorphisms are within a region of strong linkage disequilibrium (LD) among patients of European ancestry; thus, they may all point to the same common causal polymorphism. 10,14 However, neither the causative VKORC1 polymorphism nor the molecula...
Opioids are mainly used to treat both acute and chronic pain. Several opioids are metabolized to some extent by CYP2D6 (codeine, tramadol, hydrocodone, oxycodone, and methadone). Polymorphisms in CYP2D6 have been studied for an association with the clinical effect and safety of these drugs. Other genes that have been studied for their association with opioid clinical effect or adverse events include OPRM1 (mu receptor) and COMT (catechol‐O‐methyltransferase). This guideline updates and expands the 2014 Clinical Pharmacogenetics Implementation Consortium (CPIC) guideline for CYP2D6 genotype and codeine therapy and includes a summation of the evidence describing the impact of CYP2D6, OPRM1, and COMT on opioid analgesia and adverse events. We provide therapeutic recommendations for the use of CYP2D6 genotype results for prescribing codeine and tramadol and describe the limited and/or weak data for CYP2D6 and hydrocodone, oxycodone, and methadone, and for OPRM1 and COMT for clinical use.
Summary Background VKORC1 and CYP2C9 are important contributors to warfarin dose variability, but explain less variability for individuals of African descent than for those of European or Asian descent. We aimed to identify additional variants contributing to warfarin dose requirements in African Americans. Methods We did a genome-wide association study of discovery and replication cohorts. Samples from African-American adults (aged ≥18 years) who were taking a stable maintenance dose of warfarin were obtained at International Warfarin Pharmacogenetics Consortium (IWPC) sites and the University of Alabama at Birmingham (Birmingham, AL, USA). Patients enrolled at IWPC sites but who were not used for discovery made up the independent replication cohort. All participants were genotyped. We did a stepwise conditional analysis, conditioning first for VKORC1 −1639G→A, followed by the composite genotype of CYP2C9*2 and CYP2C9*3. We prespecified a genome-wide significance threshold of p<5×10−8 in the discovery cohort and p<0·0038 in the replication cohort. Findings The discovery cohort contained 533 participants and the replication cohort 432 participants. After the prespecified conditioning in the discovery cohort, we identified an association between a novel single nucleotide polymorphism in the CYP2C cluster on chromosome 10 (rs12777823) and warfarin dose requirement that reached genome-wide significance (p=1·51×10−8). This association was confirmed in the replication cohort (p=5·04×10−5); analysis of the two cohorts together produced a p value of 4·5×10−12. Individuals heterozygous for the rs12777823 A allele need a dose reduction of 6·92 mg/week and those homozygous 9·34 mg/week. Regression analysis showed that the inclusion of rs12777823 significantly improves warfarin dose variability explained by the IWPC dosing algorithm (21% relative improvement). Interpretation A novel CYP2C single nucleotide polymorphism exerts a clinically relevant effect on warfarin dose in African Americans, independent of CYP2C9*2 and CYP2C9*3. Incorporation of this variant into pharmacogenetic dosing algorithms could improve warfarin dose prediction in this population. Funding National Institutes of Health, American Heart Association, Howard Hughes Medical Institute, Wisconsin Network for Health Research, and the Wellcome Trust.
Proton pump inhibitors (PPIs) are widely used for acid suppression in the treatment and prevention of many conditions, including gastroesophageal reflux disease, gastric and duodenal ulcers, erosive esophagitis, Helicobacter pylori infection, and pathological hypersecretory conditions. Most PPIs are metabolized primarily by cytochrome P450 2C19 (CYP2C19) into inactive metabolites, and CYP2C19 genotype has been linked to PPI exposure, efficacy, and adverse effects. We summarize the evidence from the literature and provide therapeutic recommendations for PPI prescribing based on CYP2C19 genotype (updates at http://www.cpicpgx.org). The potential benefits of using CYP2C19 genotype data to guide PPI therapy include (i) identifying patients with genotypes predictive of lower plasma exposure and prescribing them a higher dose that will increase the likelihood of efficacy, and (ii) identifying patients on chronic therapy with genotypes predictive of higher plasma exposure and prescribing them a decreased dose to minimize the risk of toxicity that is associated with long‐term PPI use, particularly at higher plasma concentrations.
These data from real-world observations demonstrate a higher risk for cardiovascular events in patients with a CYP2C19 loss-of-function allele if clopidogrel versus alternative therapy is prescribed. A future randomized study of genotype-guided antiplatelet therapy may be of value.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.