Dunite–harzburgite–olivine-bearing orthopyroxenite successions in the subvolcanic Chapesvara-I and Chapesvara-II intrusions in the Serpentinite Belt, western Kola Peninsula, are notably magnesian. The mean Mg# value (whole-rock) is 86.6, and the olivine is Fo84−89. The upper contact facies (UCF) displays a lower Mg# (81.6). It consists of grains of Fo92 and abundant chromian spinel, implying rapid crystallization of an almost unfractionated melt. On average, the whole-rock Al2O3/TiO2 value is 22.45, close to 22.9 (UCF) and to the primitive mantle, ~22. The rise of primitive ultramafic magma presumably occurred in a special tectonic setting at the boundary of the Paleoproterozoic Lapland Granulite Terrane and the Belomorian Composite Terrane of Archean age. The Chapesvara suite resembles examples of the Al-undepleted komatiites in the Barberton Belt, South Africa, with magmas of up to 30–35% MgO. The UCF rock yields an anomalously low molar MgO/SiO2 value, close to that of dunitic rocks located at the center of the Chapesvara-II body. This rock is the most primitive, as indicated by the maximum Fo content of olivine, the lowest value of (Gd/Yb)N, 0.52, and the lowest abundances of middle to heavy rare-earth elements (REE) in the chondrite-normalized spectrum. The crystallization of the Chapesvara-II sill-like intrusion likely proceeded in two stages, which are evident from the olivine compositions varying from the maximum Fo92 (UCF) to Fo≤89.5 (the central dunite zone). At Stage 1, the UCF rock (Fo92) crystallized first, close to the upper contact. The area of crystallization then shifted to a central portion of the Chapesvara-II body, in which the dunitic zone (Fo89.5) formed in situ (Stage 2). The compositional variations in chromian spinel are consistent with this suggestion. Two crystallization trends were recognized. The type-1 trend displays a relative maximum or minimum close to the center, and then diverges into two linear subtrends directed upward and downward. This pattern is manifested in the variations of Mg# in olivine and chromian spinel, the whole-rock contents of Al and Ca, and in levels of incompatible elements: Ti, V, Zr, Y, and Hf. The type-2 trend decreases or increases uniformly from top to bottom. Variations in amount of Ni in olivine, the Fe3+# index in chromian spinel, and in values of Mg# (rocks), follow a type-2 trend. Variations in total amounts of REE, Nb, and Th, which gradually increase downward, are also related to a type-2 trend. Thus, a contrasting development and possible interference of the two types of evolutionary trends were observed in the crystallization history of the Chapesvara-II sill-like body. A double-front crystallization, hitherto unreported, involved two fronts moving upward and downward, respectively. The upward subtrend appeared to be of subordinate importance, whereas the extent of fractional crystallization of the downward front was much greater. Crystallization proceeded from the top to the bottom, presumably because of the preferential loss of heat at the roof. Variations in the Fe3+# index indicate that the level of fO2 also increased downward with progressive crystallization. Convection cells were presumably the key mechanism of accumulation of the crystallizing olivine grains to form the central dunite zone close to the center of the sill-like intrusion. The observed characteristics of the Chapesvara complex indicate the existence of a primitive-mantle source and imply a highly magnesian composition of intruding magma not only for Chapesvara, but also for the Pados-Tundra layered complex and associated suites of the Serpentinite Belt in the Kola Peninsula.
The lopolithic Pados-Tundra layered complex, the largest member of the Serpentinite belt–Tulppio belt (SB–TB) megastructure in the Fennoscandian Shield, is characterized by (1) highly magnesian compositions of comagmatic dunite–harzburgite–orthopyroxenite, with primitive levels of high-field-strength elements; (2) maximum values of Mg# in olivine (Ol, 93.3) and chromian spinel (Chr, 57.0) in the Dunite block (DB), which exceed those in Ol (91.7) and Chr (42.5) in the sills at Chapesvara, and (3) the presence of major contact-style chromite–IPGE-enriched zones hosted by the DB. A single batch of primitive, Al-undepleted komatiitic magma crystallized normally as dunite close to the outer contact, then toward the center. A similar magma gave rise to Chapesvara and other suites of the SB–TB megastructure. Crystallization proceeded from the early Ol + Chr cumulates to the later Ol–Opx and Opx cumulates with accessory Chr in the Orthopyroxenite zone. The accumulation of Chr resulted from efficient cooling along boundaries of the Dunite block. The inferred front of crystallization advanced along a path traced by vectors of Ol and Chr compositions. Grains and aggregates of Chr were mainly deposited early after the massive crystallization of olivine. Chromium, Al, Zn and H2O, all incompatible in Ol, accumulated to produce podiform segregations or veins of chromitites. This occurred episodically along the moving front of crystallization. Crystallization occurred rapidly owing to heat loss at the contact and to a shallow level of emplacement. The Chr layers are not continuous but rather heterogeneously distributed pods or veins of Chr–Ol–clinochlore segregations. Isolated portions of melt enriched in H2O and ore constituents accumulated during crystallization of Ol. Levels of fO2 in the melt and, consequently, the content of ferric iron in Chr, increased progressively, as in other intrusions of the SB–TB megastructure. The komatiitic magma vesiculated intensely, which led to a progressive loss of H2 and buildup in fO2. In turn, this led to the appearance of anomalous Chr–Ilm parageneses. Diffuse rims of Chr grains, abundant in the DB, contain elevated levels of Fe3+ and enrichments in Ni and Mn. In contrast, Zn is preferentially partitioned into the core, leading to a decoupling of Zn from Mn, also known at Chapesvara. The sulfide species display a pronounced Ni-(Co) enrichment in assemblages of cobaltiferous pentlandite, millerite (and heazlewoodite at Khanlauta), deposited at ≤630 °C. The oxidizing conditions have promoted the formation of sulfoselenide phases of Ru in the chromitites. The attainment of high degrees of oxidation during crystallization of a primitive parental komatiitic magma accounts for the key characteristics of Pados-Tundra and related suites of the SB–TB megastructure.
We describe occurrences of platinum-group minerals (PGM) and an uncommon mineral enriched in Cl, and provide a brief review of Cl-bearing minerals associated with basic–ultrabasic complexes. An unusual phosphohedyphane-like phase (~30 µm), close to CaPb4(PO4)3Cl, occurs in one of the PGM-bearing veins of massive sulfides in the Monchepluton layered complex, Kola Peninsula, Russia. These veins consist of varying amounts of pyrrhotite, pentlandite, chalcopyrite, pyrite and accessory grains of galena; they are fairly abundant in the heavy-mineral concentrate, as are small (<0.1 mm) grains of PGM: michenerite, sperrylite, Bi-enriched members of the merenskyite–moncheite series and kotulskite, also rich in Bi. The PGE mineralization is attributed to a low-temperature deposition at the hydrothermal stage. The pyromorphite–phosphohedyphane solid solution likely formed as a secondary phase under conditions of a progressive build-up of oxygen fugacity via oxidation reactions of a precursor grain of galena and involving Ca, as an incompatible component of the sulfides, in a medium of residual fluid enriched in Cl.
—For the first time, exposures of ultramafic rocks of subvolcanic origin have been investigated at the foot of Mount Khanlauta (Kola Peninsula) located at a distance of ~2 km from the southwestern margin of the Pados-Tundra layered complex of dunite–harzburgite–orthopyroxenite composition, which hosts zones of chromitite and unconventional PGE mineralization. The ultramafic body is composed of micro- to fine-grained harzburgite and subordinate orthopyroxenite and has a cryptically zoned structure. The body is of E–W strike and has a small size with an apparent thickness of ~0.1 km; the exposed outcrops exhibit a blocky surface as a result of extensive cracking caused by degassing and rapid cooling of a parental komatiitic melt. Elements of columnar parting are recognized, which have a hexagonal shape in cross section and are consistent with the inferred subvolcanic origin. Two zones are identified. Zone I is formed by a more magnesian olivine with Mg# = 86.0–87.9 (0.15–0.21 wt.% MnO). In Zone II, olivine grains are notably less magnesian (Mg# = 81.8–84.1) and invariably have higher contents of manganese (0.19–0.30 wt.% MnO). The presence of this zoning is corroborated by the lateral distribution of accessory chromian spinel grains with maximum Mg# values (>20) in Zone I. The Khanlauta rocks also contain subordinate orthopyroxene (Mg# = 86.3–87.2), amphiboles of the tremolite–actinolite series, and anthophyllite of deuteric (autometasomatic) origin along with accessory minerals: ilmenite, hematite (~15 mol.% escolaite, Cr2O3, in solid solution), and mono- and diphase grains of sulfides in the form of intergrowths of Co-bearing pentlandite (Ni/Fe = 0.9–1.3; 1.00–16.74 wt.% Co; up to 1.7–6.8 wt.% Cu) and heazlewoodite (locally in intergrowth with hematite). The inferred front of crystallization moved in the western direction, causing the formation of Zone II from a more fractionated melt with a notably lower Mg# value. A sharp increase in oxygen fugacity locally caused the formation of anomalous parageneses of chromite and ilmenite, in which the observed Mg# values of ilmenite are considerably greater than those of the coexisting chromite. The geochemical whole-rock characteristics based on major, minor, and trace elements (including LILE, REE, and HFSE), as well as the compositions and trends of chromian spinels, are similar to those in differentiated (zoned) sills of the Chapesvara complex, which are closely associated with the Pados-Tundra layered complex. The obtained data indicate comagmatic relationships among the Khanlauta massif, zoned sills of the Chapesvara complex, and the Pados-Tundra layered complex. All of them crystallized from a primitive highly magnesian Fe- and Cr-enriched komatiitic magma (Al-undepleted). Thus, they belong to a single subvolcano–plutonic association being part of the Serpentinite belt–Tulppio belt (SB–TB) megastructure of presumably Paleoproterozoic age.
The maximum value of Mg# [= 100Mg/(Mg + Fe2+ + Mn)] in chromium-bearing spinel-group minerals (Chr) in the Ultrabasic Core Zone (UCZ) of the Lyavaraka orthopyroxenite – harzburgite – dunite complex of the Serpentinite Belt in the Kola Peninsula is 54.5–67.5. Such highly magnesian compositions of spinel are associated with notable enrichments of ferric iron (Fe3+# 58–63). There are two generations of accessory Chr in the UCZ unit. The first generation occurs as inclusions in olivine that is not unusually magnesian (Mg# 90.3), and the second is closely associated with serpentine. The compositional series of Chr at Lyavaraka attains more aluminous compositions than was observed in nearby intrusive bodies. The anomalously high level of Mg in Chr, also manifest in ilmenite, is mainly a result of the high intrinsic fugacity of oxygen attained locally in the melt. A progressive buildup in H2O and increase in fO2 likely resulted from efficient vesiculation and selective loss of H2 from the Al-undepleted komatiitic magma crystallizing in a shallow setting. The chromian spinel forming in such a modified magma is virtually unzoned in Mn, and a minor quantity of Mn is also present in olivine and orthopyroxene. In contrast, zinc is strongly partitioned in the core of Chr, as it is relatively incompatible in the coexisting olivine and orthopyroxene at that stage. Zinc efficiently partitioned into the H2O-enriched melt, which crystallized as the pegmatitic orthopyroxenite near the contacts at Lyavaraka. A high potential of oxidation appears to be characteristic of all orthopyroxenite – harzburgite – dunite suites of the Serpentinite Belt formed from a primitive melt of komatiitic composition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.