Aim Based on seven consecutive seasons of biotic survey and inventory of the terrestrial and freshwater plants and animals of the 30 major islands of the Kuril Archipelago, a description of the biodiversity and an analysis of the biogeography of this previously little known part of the world are provided.Location The Kuril Archipelago, a natural laboratory for investigations into the origin, subsequent evolution, and long-term maintenance of insular populations, forms the eastern boundary of the Okhotsk Sea, extending 1200 km between Hokkaido, Japan, and the Kamchatka Peninsula of Russia. A chain of more than 56 islands, the system is only slightly smaller than the Hawaiian Islands, covering an area of 15,600 km 2 and providing 2409 km of coastline.Methods Collections of whole specimens of plants and animals, as well as tissue samples for future molecular studies, were made by teams of scientists from Russia, Japan, and the USA, averaging 34 people for each of the seven annual summer expeditions (1994)(1995)(1996)(1997)(1998)(1999)(2000). Floral and faunal similarities between islands were evaluated by using Sorensen's coefficient of similarity. The similarity matrix resulting from pair-wise calculations was then subjected to UPGMA cluster analysis.
Predator-prey interactions are major processes promoting phenotypic evolution. However, it remains unclear how predation causes morphological and behavioural diversity in prey species and how it might lead to speciation. Here, we show that substantial divergence in the phenotypic traits of prey species has occurred among closely related land snails as a result of adaptation to predator attacks. This caused the divergence of defensive strategies into two alternatives: passive defence and active defence. Phenotypic traits of the subarctic Karaftohelix land snail have undergone radiation in northeast Asia, and distinctive morphotypes generally coexist in the same regions. In these land snails, we documented two alternative defence behaviours against predation by malacophagous beetles. Furthermore, the behaviours are potentially associated with differences in shell morphology. In addition, molecular phylogenetic analyses indicated that these alternative strategies against predation arose independently on the islands and on the continent suggesting that anti-predator adaptation is a major cause of phenotypic diversity in these snails. Finally, we suggest the potential speciation of Karaftohelix snails as a result of the divergence of defensive strategies into passive and active behaviours and the possibility of species radiation due to anti-predatory adaptations.
Lake Baikal is the deepest, oldest and most speciose ancient lake in the world. The lake is characterized by high levels of molluscan species richness and endemicity, including the limpet family Acroloxidae with 25 endemic species. Members of this group generally inhabit the littoral zone, but have been recently found in the abyssal zone at hydrothermal vents and oil-seeps. Here, we use mitochondrial and nuclear data to provide a first molecular phylogeny of the Lake Baikal limpet radiation, and to date the beginning of intra-lacustrine diversification. Divergence time estimates suggest a considerably younger age for the species flock compared with lake age estimates, and the beginning of extensive diversification is possibly related to rapid deepening and cooling during rifting. Phylogenetic relationships and divergence time estimates do not clearly indicate when exactly the abyssal was colonized but suggest a timeframe coincident with the formation of the abyssal in the northern basin (Middle to Late Pleistocene).
Endemic organisms of ancient lakes have been studied as models to understand processes of speciation and adaptive radiation. However, it remains unclear how ancient lakes play roles in genetic and phenotypic diversity of freshwater mollusks. In the present study, we focus on viviparid freshwater snails in the ancient lakes of East and Southeast Asia (Japan and China) to address this question. Using molecular phylogenetic analyses based on mitochondrial (COI, 16S) and nuclear genes (18S, 28S, H3), we show that patterns of species diversification in viviparid lineages. Colonization to ancient lakes occurred independently in China and Japan at least four times, with subsequent diversification into more than two species within each lake group. Morphological analyses of fossil related viviparids suggest parallel phenotypic evolution occurred in the different lakes and ages. Each lake contained a single lineage which was phenotypically diversified relative to those from other sites. Using genome‐wide SNPs obtained by MIG‐seq, we also examined the genetic structure of three Japanese viviparids, including two endemic species of ancient Lake Biwa. The results suggest that these two species diversified from the population of the third species living in wetlands surrounding the lake. These findings suggest that rapid diversification of lineages and phenotypic divergence can occur in ancient lakes compared to other habitats. Formation of large lakes probably promotes speciation and phenotypic divergence as a result of adaptation into different microhabitats. High numbers of ancient lakes could be a driver of species diversity in Asian viviparid snails.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.