Abstract-We consider the results of the statistical analysis using the methods of the principal components and canonical coherences applied to the processing of long (1986)(1987)(1988)(1989)(1990)(1991)(1992)(1993)(1994)(1995)(1996)(1997)(1998)(1999)(2000)(2001)(2002)(2003)(2004)(2005) time series of hydrogeochemical observations at the flowing wells and springs in Kamchatka. The time frequency diagrams of the evolution of informative statistics characterizing the collective behavior of multidimensional hydrogeochemical time series are constructed, and the time intervals and frequency bands where the synchronization signals (Lyubushin, 2007) appear are identified. The features of their occurrence are analyzed in comparison to the strong (M w = 6.6-7.8) local earthquakes. It is found that such signals in the measurements of some multidi mensional time series can arise both before and after earthquakes, i.e. these signals have a precursory (P2) and postseismic (P3) character.
A new technology for predicting strong earthquakes with a magnitude range of Mw about 7 and more is considered, based on the use of continuous recordings of seismic noise on a network of 21 broadband stations of the GS RAS in the region of the Kamchatka Peninsula, the Commander Islands and the Paramushir Island. The article is described a forecasting algorithm created by A.A. Lyubushin, IPE RAS, and the state of its implementation in the Kamchatka Division GS RAS for the purpose of an advance (months - first years) assessment of the strong earthquakes preparation sites. The data processing algorithm includes the calculation of four noise statistics time series for each station and the construction of their spatial distribution maps for different time intervals. We used four noise statistics, including the minimal entropy of the orthogonal wavelet coefficients squares and three characteristics of the multifractal spectrum of singularity – the generalized Hurst exponent, the carrier width, and the spectral wavelet exponent. Based on previous research, characteristic features of the four seismic noise statistics behavior at preparation stages of the local earthquakes 2013-2016 with Мw=6.6-8.3 were revealed, corresponding to similar changes before the two earthquakes with Мw=8.3 and 9.0 in Japan. It was found that an increase in the danger of a strong earthquake is accompanied by an increase in minimal entropy and a decrease in the carrier width and other parameters of the singularity spectrum. Since 2020, the processing of current data from the network of broadband stations of the GS RAS in the Far East region has been carried out in accordance with the seismic forecasting algorithm for drawing up quarterly forecast conclusions, which are sent to the Russian Expert Council on Earthquake Forecasting, Seismic Hazard and Risk Assessment (REC) and to Kamchatka Branch of REC
Актуальным направлением исследований, особенно для высокосейсмичной территории Камчатского края и сопредельных районов Дальнего Востока России, является развитие методов обработки непрерывных сейсмических записей для повышения эффективности их использования в решении задач геофизического мониторинга и диагностики признаков подготовки сильных землетрясений. Техническое развитие системы сейсмологических наблюдений в Дальневосточном регионе России в XXI в. [7, 8] обеспечило условия для изучения вариаций сейсмического шума, непрерывно регистрируемого на сети широкополосных станций ФИЦ ЕГС РАН, и оценки сейсмопрогностического потенциала таких данных. С 2011 г. авторами, с использованием методики и программных средств, созданных А.А. Любушиным, проводятся исследования сейсмопрогностических свойств фонового сейсмического шума (ФСШ), регистрируемого на вертикальных каналах сети из 21 широкополосных станций ФИЦ ЕГС РАН в районе п-ва Камчатка, Командорских о-вов и о-ва Парамушир (рис. 1). В работах [2, 4, 6] приведены данные о расположении сети станций, ее геометрии, регистрирующей аппаратуре, фрагменты волновых форм шума и их спектральные характеристики.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.