The serine/threonine kinase Raf-1 functions downstream of Ras in a signal transduction cascade which transmits mitogenic stimuli from the plasma membrane to the nucleus. Raf-1 integrates signals coming from extracellular factors and, in turn, activates its substrate, MEK kinase. MEK activates mitogen-activated protein kinase (MAPK), which phosphorylates other kinases as well as transcription factors. Raf-1 exists in a complex with HSP90 and other proteins. The benzoquinone ansamycin geldanamycin (GA) binds to HSP90 and disrupts the Raf-1-HSP90 multimolecular complex, leading to destabilization of Raf-1. In this study, we examined whether Raf-1 destabilization is sufficient to block the Raf-1-MEK-MAPK signalling pathway and whether GA specifically inactivates the Raf-1 component of this pathway. Using the model system of NIH 3T3 cells stimulated with phorbol 12-myristate 13-acetate (PMA), we show that GA does not affect the ability of protein kinase C␣ to be activated by phorbol esters, but it does block activation of MEK and MAPK. Further, GA does not decrease the activity of constitutively active MEK in transiently transfected cells. Finally, disruption of the Raf-1-MEK-MAPK signalling pathway by GA prevents both the PMA-induced proliferative response and PMA-induced activation of a MAPK-sensitive nuclear transcription factor. Thus, we demonstrate that interaction between HSP90 and Raf-1 is a sine qua non for Raf stability and function as a signal transducer and that the effects observed cannot be attributed to a general impairment of protein kinase function.
p53 is required for hypoxia-induced apoptosis in vivo, although the mechanism by which this occurs is not known. Conversely, induction of the hypoxia-inducible factor-1 (HIF-1) transactivator stimulates transcription of a number of genes crucial to survival of the hypoxic state. Here we demonstrate that p53 represses HIF-1-stimulated transcription. Although higher levels of p53 are required to inhibit HIF than are necessary to transcriptionally activate p53 target genes, these levels of p53 are similar to those that stimulate cleavage of poly-(ADP-ribose) polymerase, an early event in apoptosis. Transfection of full-length p300 stimulates both p53-dependent and HIF-dependent transcription but does not relieve p53-mediated inhibition of HIF. In contrast, a p300 fragment, which binds to p53 but not to HIF-1, prevents p53-dependent repression of HIF activity. Transcriptionally inactive p53, mutated in its DNA binding domain, retains the ability to block HIF transactivating activity, whereas a transcriptionally inactive double point mutant defective for p300 binding does not inhibit HIF. Finally, depletion of doxorubicin-induced endogenous p53 by E6 protein attenuates doxorubicinstimulated inhibition of HIF, suggesting that a p53 level sufficient for HIF inhibition can be achieved in vivo. These data support a model in which stoichiometric binding of p53 to a HIF/p300 transcriptional complex mediates inhibition of HIF activity.
The tumor suppressor protein p53 is emerging as a central regulator of homologous recombination (HR) processes and DNA replication. P53 may downregulate HR through multiple mechanisms including the reported associations with the Rad51 and Rad54 recombinases, and the BLM and WRN helicases. Here, we investigated whether the interaction of p53 with human replication protein A (RPA) is necessary for the regulation of HR. By employing a plasmid-based HR assay in p53-null H1299 lung carcinoma cells, we studied the HR-suppressing properties of a panel of p53 mutants, which varied in their ability to interact with RPA. Both wild-type p53 and a transactivation-deficient p53 mutant (L22Q/W23S) suppressed HR and prevented RPA binding to ssDNA in vitro and in vivo. Conversely, p53 mutations that specifically disrupt the RPA-binding domain, while not compromising p53 transactivation function (D48H/D49H and W53S/ F54S), did not affect HR. Suppression of HR was also not seen with missense mutations in the p53 core domain (His175 and His273), which retained the ability to interact with RPA, suggesting that the disruption of additional binding interactions of p53, for example, with Rad51 or recombination intermediates, also impacts on HR. We hypothesize that sequestration of RPA by p53 at the sites of recombination is one means by which p53 can inhibit HR processes. Our data support and extend the previously formulated 'dual model' of p53's role as guardian of the genome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.