The aim of this study was to characterize the structural and molecular biology as well as evaluate the immediate and late responses of prostatic cancer in the transgenic adenocarcinoma of the mouse prostate (TRAMP) model after treatment with goniothalamin (GTN) and celecoxib. The treated mice received GTN (150 mg/kg, gavage) or celecoxib (10 mg/kg, gavage) from 8 to 12 weeks of age. They were killed at different ages: the immediate-response groups at 12 weeks and the late-response groups at 22 weeks. The ventral prostate was collected for light microscopy, immunohistochemistry, western blotting, TUNEL, and ELISA. Morphological analyses indicated that GTN treatment delayed the progression of prostatic adenocarcinoma, leading to a significant decrease of prostatic lesion frequency in both experimental period responses to this treatment, mainly high-grade prostatic intraepithelial neoplasia and well-differentiated adenocarcinoma. Also, the celecoxib treatment showed a particular decrease in the proliferative processes (PCNA) in both the experimental periods. Despite celecoxib diminishing the COX2 and IGFR1 levels, GTN presented higher action spectrum considering the decrease of a greater molecular number involved in the proliferative and inflammatory processes in prostatic cancer. Goniothalamin attenuated the pro-inflammatory response in TRAMP prostatic microenvironment, delaying prostate cancer (PCa) progression. Celecoxib treatment was efficient in the regulation of COX2 in the TRAMP mice, mainly in the advanced disease grade. Finally, we concluded that inflammatory process control in early grades of PCa was crucial for the downregulation of the signaling pathways involved in the proliferative processes in advanced cancer grades.
BackgroundIn recent times, anti-cancer treatments have focused on Fibroblast Growth Factor (FGF) and Vascular-Endothelial Growth Factor (VEGF) pathway inhibitors so as to target tumor angiogenesis and cellular proliferation. One such drug is Nintedanib; the present study evaluated the effectiveness of Nintedanib treatment against in vitro proliferation of human prostate cancer (PCa) cell lines, and growth and progression of different grades of PCa lesions in pre-clinical PCa transgenic adenocarcinoma for the mouse prostate (TRAMP) model.MethodsBoth androgen-independent (LNCaP) and androgen-dependent (PC3) PCa cell lines were treated with a range of Nintedanib doses for 72 h, and effect on cell growth and expression of angiogenesis associated VEGF receptors was analyzed. In pre-clinical efficacy evaluation, male TRAMP mice starting at 8 and 12 weeks of age were orally-fed with vehicle control (10% Tween 20) or Nintedanib (10 mg/Kg/day in vehicle control) for 4 weeks, and sacrificed immediately after 4 weeks of drug treatment or sacrificed 6–10 weeks after stopping drug treatments. At the end of treatment schedule, mice were sacrificed and ventral lobe of prostate was excised along with essential metabolic organ liver, and subjected to histopathological and extensive molecular evaluations.ResultsThe total cell number decreased by 56–80% in LNCaP and 45–93% in PC3 cells after 72 h of Nintedanib treatment at 2.5–25 μM concentrations. In pre-clinical TRAMP studies, Nintedanib led to a delay in tumor progression in all treatment groups; the effect was more pronounced when treatment was given at the beginning of the glandular lesion development and continued till study end. A decreased microvessel density and VEGF immunolocalization was observed, besides decreased expression of Androgen Receptor (AR), VEGFR-1 and FGFR-3 in some of the treated groups. No changes were observed in the histological liver analysis.ConclusionsNintedanib treatment was able to significantly decrease the growth of PCa cell lines and also delay growth and progression of PCa lesions to higher grades of malignancy (without inducing any hepatotoxic effects) in TRAMP mice. Furthermore, it was observed that Nintedanib intervention is more effective when administered during the early stages of neoplastic development, although the drug is capable of reducing cell proliferation even after treatment interruption.
This study evaluated the possible protective effects of cilostazol against myonecrosis in dystrophic diaphragm muscle in vivo, focusing on oxidative stress, the inflammatory response and angiogenesis. Young mdx mice, the experimental animal for Duchenne muscular dystrophy, received cilostazol for 14 days. A second group of mdx mice and a control group of C57BL/10 mice received a saline solution. In the mdx mice, cilostazol treatment was associated with reduced loss of muscle strength (-34.4%), decreased myonecrosis, reduced creatine kinase levels (-63.3%) and muscle fibres stained for immunoglobulin G in dystrophic diaphragm muscle (-81.1%), and a reduced inflammatory response, with a decreased inflammatory area (-22%), macrophage infiltration (-44.9%) and nuclear factor-κB (-24%) and tumour necrosis factor-α (-48%) content in dystrophic diaphragm muscle. Furthermore, cilostazol decreased oxidative stress and attenuated reactive oxygen species production (-74%) and lipid peroxidation (-17%) in dystrophic diaphragm muscle, and promoted the up-regulation of angiogenesis, increasing the number of microvessels (15%). In conclusion, the present results show that cilostazol has beneficial effects in dystrophic muscle. More research into the potential of cilostazol as a novel therapeutic agent for the treatment of dystrophinopathies is required.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.