Low quality of life and life-threatening conditions often demand pharmacological screening of lead compounds. A spectrum of pharmacological activities has been attributed to pyrazole analogs. The substitution, replacement, or removal of functional groups on a pyrazole ring appears consistent with diverse molecular interactions, efficacy, and potency of these analogs. This mini-review explores cytotoxic, cytoprotective, antinociceptive, anti-inflammatory, and antidepressant activities of some pyrazole analogs to advance structure-related pharmacological profiles and rational design of new analogs. Numerous interactions of these derivatives at their targets could impact future research considerations and prospects while offering opportunities for optimizing therapeutic activity with fewer adverse effects.
The therapeutic limitations and poor management of inflammatory conditions are anticipated to impact patients negatively over the coming decades. Following the synthesis of the first pyrazole—antipyrine in 1887, several other derivatives have been screened for anti‐inflammatory, analgesic, and antipyretic activities. Arguably, the pyrazole ring, as a major pharmacophore and central scaffold partly, defines the pharmacological profile of several derivatives. In this review, we explore the structural–activity relationship that accounts for the pharmacological profile of pyrazole derivatives and highlights future research perspectives capable of optimizing current advancement in the search for safe and efficacy anti‐inflammatory drugs. The flourishing research into the pyrazole derivatives as drug candidates has advanced our understanding of inflammation‐related diseases and treatment.
The heptapeptide Bj-PRO-7a, isolated and identified from Bothrops jararaca (Bj) venom, produces antihypertensive and other cardiovascular effects that are independent on angiotensin converting enzyme inhibition, possibly relying on cholinergic muscarinic receptors subtype 1 (M1R). However, whether Bj-PRO-7a acts upon the central nervous system and modifies behavior is yet to be determined. Therefore, the aims of this study were: i) to assess the effects of acute administration of Bj-PRO-7a upon behavior; ii) to reveal mechanisms involved in the effects of Bj-PRO-7a upon locomotion/exploration, anxiety, and depression-like behaviors. For this purpose, adult male Wistar (WT, wild type) and spontaneous hypertensive rats (SHR) received intraperitoneal injections of vehicle (0.9% NaCl), diazepam (2 mg/kg), imipramine (15 mg/kg), Bj-PRO-7a (71, 213 or 426 nmol/kg), pirenzepine (852 nmol/kg), α-methyl-DL-tyrosine (200 mg/kg), or chlorpromazine (2 mg/kg), and underwent elevated plus maze, open field, and forced swimming tests. The heptapeptide promoted anxiolytic and antidepressant-like effects and increased locomotion/exploration. These effects of Bj-PRO-7a seem to be dependent on M1R activation and dopaminergic receptors and rely on catecholaminergic pathways.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.