BackgroundThe gold standard for osseointegration remains the autogenous bone graft, but biomaterials such as Beta - tricalcium phosphate (β - TCP) in its pure-phase showed promising results to be practical bone substitutes. This kind of implants are optimal candidates for bone integration due to their osseoconductive, biocompatibility, bioactivity, and absorptive properties.MethodsA systematic review was conducted using 5 databases (Cochrane Library, PubMed, Scielo, Medline-Bireme and Google Scholar) for searching published studies between January 1st 2011 and June 15th 2021. Only clinical and experimental studies, and case reports were included in this research. Human and animal studies published only in Portuguese or English with clinical, radiologic, and histologic evidence of new bone formation, osseoconduction, and osseointegration were included. This systematic review was reported according to PRISMA guidelines.ResultsApproximately 14.554 articles were initially found, but after advanced searching using specific including and excluding keywords, matching Boolean operators “AND,” “OR” and “NOT,” and after excluding duplicates, a total of 12 articles were included for this systematic review, including experimental works, a retrospective study, a randomized controlled clinical study, a randomized prospective study, a prospective observational study, and a case report. All articles showed 100% effectiveness in bone integration after β - TCP implantation by clinical, image and/or histologic assessment. Implant shape and porosity seem to have influence in osseointegration process. β - TCP can give predictable, sustainable, and adequate new bone formation with the least infection rates in implant placement cases and patient morbidity, which is the current goals for bone integration, augmentation and replacement.Conclusionβ - TCP in its pure-phase is widely used in dentistry and maxillofacial surgery, but there is a lack of information about the use of this biomaterial for filling critical segmental defects of long bones in veterinary medicine. In this area, only experimental studies in small defects were carried out, with no clinical cases performed in animals with a longer observation time. β - TCP can produce predictable, sustainable, and adequate bone formation, with minimal infection rates and low patient morbidity. But more clinical studies in the future, demonstrating specific metric measurements in relation to bone consolidation, as well as showing results using other shapes of this implant are needed to evaluate further in depth osseoconductive and osseointegrative characteristics of this biomaterial, in order to develop new comparisons and quantitative analyses for its use in veterinary medicine as a bone replacement.
Cerebrospinal fluid drainage and immediate ischemic preconditioning seems to protect the spinal cord during descending thoracic aorta cross-clamping. Nevertheless, the obtained level of spinal cord protection seems to be more significant with cerebrospinal fluid drainage.
SummaryObjectives: To evaluate the effectiveness of acute ischemic preconditioning (IP), based on somatosensory evoked potentials (SSEP) monitoring, as a method of spinal cord protection and to asses SSEP importance in spinal cord neuromonitoring.Methods: Twenty-eight dogs were submitted to spinal cord ischemic injury attained by descending thoracic aorta cross-clamping. In the C45 group, the aortic cross-clamping time was 45 min (n=7); in the IP45 group, the dogs were submitted to IP before the aortic cross-clamping for 45 min (n=7). In the C60 group, the dogs were submitted to 60 min of aortic cross-clamping (n=7), as in the IP60 group that was previously submitted to IP. The IP cycles were determined based on SSEP changes.Results: Tarlov scores of the IP groups were significantly better than those of the controls (p = 0.005). Paraplegia was observed in 3 dogs from C45 and in 6 from C60 group, although all dogs from IP45 group were neurologically normal, as 4 dogs from IP60. There was a significant correlation between SSEP recovery time until one hour of aortic reperfusion and the neurological status (p = 0.011), showing sensitivity of 75% and specificity of 83%.Conclusion: Repetitive acute IP based on SSEP is a protection factor during spinal cord ischemia, decreasing paraplegia incidence. SSEP monitoring seems to be a good neurological injury assessment method during surgical procedures that involve spinal cord ischemia.
RESUMO MINGRONE, L. E. Avaliação hemodinâmica de cães submetidos à parada circulatória total através da técnica do "Inflow Occlusion" por diferentes períodos de tempo. [Hemodynamic evaluation of dogs submitted to total circulatory arrest using "Inflow Occlusion" technique for different periods of time]. 2006. 122 f. Tese (Mestrado em
A técnica de "Inflow Occlusion" pode ser utilizada em cirurgias cardíacas quando se pretende manter o coração aberto apenas por alguns minutos, para realização de pequenos reparos. No entanto, a parada circulatória total (PCT), evento decorrente da técnica em questão, pode acarretar severas alterações metabólicas e neurológicas ao paciente. Neste estudo foram utilizados 12 cães sem raça definida, os quais foram divididos em dois grupos, A e B, sendo os mesmos submetidos a 7 e 8 minutos de PCT, respectivamente, utilizando-se da técnica de "Inflow Occlusion". Tentou-se estabelecer normotermia durante os procedimentos cirúrgicos. Avaliações clínica e comportamental foram realizadas nos dois grupos após os procedimentos cirúrgicos e dados bioquímicos foram coletados para comparação entre os períodos pré e pós-operatórios. Ocorreram dois óbitos transoperatórios no grupo B. Alterações clínicas transitórias foram observadas no grupo A até o momento M7 (48 horas após cirurgia), e no grupo B, as mesmas foram mais intensas e presentes mesmo após M7; e em um animal do grupo B foi observada cegueira permanente por todo o período de acompanhamento. Apesar das alterações observadas, há indícios que seja seguro realizar a técnica de "Inflow Occlusion" por até 7 minutos, sendo contra-indicada, no entanto, para períodos mais prolongados.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.