Reaction kinetics is an important field of study in chemical engineering to translate laboratory-scale studies to large-scale reactor conditions. The procedures used to determine kinetic parameters (activation energy, pre-exponential factor and the reaction model) include model-fitting, model-free and generalized methods, which have been extensively used in published literature to model solid-gas reactions. A comprehensive review of kinetic analysis methods will be presented using the example of carbonate looping, an important process applied to thermochemical energy storage and carbon capture technologies. The kinetic parameters obtained by different methods for both the calcination and carbonation reactions are compared. The experimental conditions, material properties and the kinetic method are found to strongly influence the kinetic parameters and recommendations are provided for the analysis of both reactions. Of the methods, isoconversional techniques are encouraged to arrive at non-mechanistic parameters for calcination, while for carbonation, material characterization is recommended before choosing a specific kinetic analysis method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.