Cardiovascular diseases (CVDs) are one of the leading causes of death globally. In-vitro measurement of blood flow in compliant arterial phantoms can provide better insight into haemodynamic states and therapeutic procedures. However, current fabrication techniques are not capable of producing thin-walled compliant phantoms of complex shapes. This study presents a new approach for the fabrication of compliant phantoms suitable for optical measurement. Two 1.5× scaled models of the ascending aorta, including the brachiocephalic artery (BCA), were fabricated from silicone elastomer Sylgard-184. The initial phantom used the existing state of the art lost core manufacturing technique with simple end supports, an acrylonitrile butadiene styrene (ABS) additive manufactured male mould and Ebalta-milled female mould. The second phantom was produced with the same method but used more rigid end supports and ABS male and female moulds. The wall thickness consistency and quality of resulting stereoscopic particle image velocimetry (SPIV) were used to verify the fidelity of the phantom for optical measurement and investigation of physiological flow fields. However, the initial phantom had a rough surface that obscured SPIV analysis and had a variable wall thickness (range = 0.815 mm). The second phantom provided clear particle images and had a less variable wall thickness (range = 0.317 mm). The manufacturing method developed is suitable for fast and cost-effective fabrication of different compliant arterial phantom geometries.
The evolution of pressure-flow geometry in the aortic arch is increasingly understood as a key element in the treatment of hemodynamic dysfunction in patients. However, little is known about the properties of the flow across the aortic geometry and thus the sensitivity of sensor placement is also unknown. Compliant models of the aortic path can be built to allow techniques such as particle image velocimetry to measure the velocity fields. This paper presents the justification and production methodology used to generate a compliant model of the aortic arch that represents the geometry and compliance of typical hemodynamics patients. The information from twenty papers was synthesized to generate a single model of the aortic arch. The model incorporates the three branching arteries at an apex of a tapering aortic path experimental that has been manufactured as a flexible thin-walled silicon model. Calculations were undertaken to ensure that the model matches the in vivo compliance of the arteries.The experimental setup uses the compliant silicone model of the aorta with variable flow pump to mimic the cardiac cycle, and a variable extramural pressure to mimic changes in intrathoracic pressure. This research was necessary for the development of an accurate experimental setup that would enable results that are immediately applicable to the research of cardiovascular therapy optimization.
Background: The human heart is a masterpiece of the highest complexity coordinating multi-physics aspects on a multi-scale range. Thus, modeling the cardiac function in silico to reproduce physiological characteristics and diseases remains challenging. Especially the complex simulation of the blood's hemodynamics and its interaction with the myocardial tissue requires a high accuracy of the underlying computational models and solvers. These demanding aspects make whole-heart fully-coupled simulations computationally highly expensive and call for simpler but still accurate models. While the mechanical deformation during the heart cycle drives the blood flow, less is known about the feedback of the blood flow onto the myocardial tissue.Methods and Results: To solve the fluid-structure interaction problem, we suggest a cycle-to-cycle coupling of the structural deformation and the fluid dynamics. In a first step, the displacement of the endocardial wall in the mechanical simulation serves as a unidirectional boundary condition for the fluid simulation. After a complete heart cycle of fluid simulation, a spatially resolved pressure factor (PF) is extracted and returned to the next iteration of the solid mechanical simulation, closing the loop of the iterative coupling procedure. All simulations were performed on an individualized whole heart geometry. The effect of the sequential coupling was assessed by global measures such as the change in deformation and—as an example of diagnostically relevant information—the particle residence time. The mechanical displacement was up to 2 mm after the first iteration. In the second iteration, the deviation was in the sub-millimeter range, implying that already one iteration of the proposed cycle-to-cycle coupling is sufficient to converge to a coupled limit cycle.Conclusion: Cycle-to-cycle coupling between cardiac mechanics and fluid dynamics can be a promising approach to account for fluid-structure interaction with low computational effort. In an individualized healthy whole-heart model, one iteration sufficed to obtain converged and physiologically plausible results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.