[1] We use a global climate model to compare the effectiveness of many climate forcing agents for producing climate change. We find a substantial range in the ''efficacy'' of different forcings, where the efficacy is the global temperature response per unit forcing relative to the response to CO 2 forcing. Anthropogenic CH 4 has efficacy $110%, which increases to $145% when its indirect effects on stratospheric H 2 O and tropospheric O 3 are included, yielding an effective climate forcing of $0.8 W/m 2 for the period 1750-2000 and making CH 4 the largest anthropogenic climate forcing other than CO 2 . Black carbon (BC) aerosols from biomass burning have a calculated efficacy $58%, while fossil fuel BC has an efficacy $78%. Accounting for forcing efficacies and for indirect effects via snow albedo and cloud changes, we find that fossil fuel soot, defined as BC + OC (organic carbon), has a net positive forcing while biomass burning BC + OC has a negative forcing. We show that replacement of the traditional instantaneous and adjusted forcings, Fi and Fa, with an easily computed alternative, Fs, yields a better predictor of climate change, i.e., its efficacies are closer to unity. Fs is inferred from flux and temperature changes in a fixed-ocean model run. There is remarkable congruence in the spatial distribution of climate change, normalized to the same forcing Fs, for most climate forcing agents, suggesting that the global forcing has more relevance to regional climate change than may have been anticipated. Increasing greenhouse gases intensify the Hadley circulation in our model, increasing rainfall in the Intertropical Convergence Zone (ITCZ), Eastern United States, and East Asia, while intensifying dry conditions in the subtropics including the Southwest United States, the Mediterranean region, the Middle East, and an expanding Sahel. These features survive in model simulations that use all estimated forcings for the period 1880-2000. Responses to localized forcings, such as land use change and heavy regional concentrations of BC aerosols, include more specific regional characteristics. We suggest that anthropogenic tropospheric O 3 and the BC snow albedo effect contribute substantially to rapid warming and sea ice loss in the Arctic. As a complement to a priori forcings, such as Fi, Fa, and Fs, we tabulate the a posteriori effective forcing, Fe, which is the product of the forcing and its efficacy. Fe requires calculation of the climate response and introduces greater model dependence, but once it is calculated for a given amount of a forcing agent it provides a good prediction of the response to other forcing amounts.
In recent decades, there has been a tendency toward increased summer floods in south China, increased drought in north China, and moderate cooling in China and India while most of the world has been warming. We used a global climate model to investigate possible aerosol contributions to these trends. We found precipitation and temperature changes in the model that were comparable to those observed if the aerosols included a large proportion of absorbing black carbon ("soot"), similar to observed amounts. Absorbing aerosols heat the air, alter regional atmospheric stability and vertical motions, and affect the large-scale circulation and hydrologic cycle with significant regional climate effects.
Plausible estimates for the effect of soot on snow and ice albedos (1.5% in the Arctic and 3% in Northern Hemisphere land areas) yield a climate forcing of ؉0.3 W͞m 2 in the Northern Hemisphere. The ''efficacy'' of this forcing is Ϸ2, i.e., for a given forcing it is twice as effective as CO 2 in altering global surface air temperature. This indirect soot forcing may have contributed to global warming of the past century, including the trend toward early springs in the Northern Hemisphere, thinning Arctic sea ice, and melting land ice and permafrost. If, as we suggest, melting ice and sea level rise define the level of dangerous anthropogenic interference with the climate system, then reducing soot emissions, thus restoring snow albedos to pristine high values, would have the double benefit of reducing global warming and raising the global temperature level at which dangerous anthropogenic interference occurs. However, soot contributions to climate change do not alter the conclusion that anthropogenic greenhouse gases have been the main cause of recent global warming and will be the predominant climate forcing in the future. (2) suggests that the fossil fuel BC forcing is larger, Ϸ0.5 W͞m 2 . J.H. and colleagues (3-5) have argued that the total anthropogenic BC forcing, including BC from fossil fuels, biofuels, and outdoor biomass burning, and also including the indirect effects of BC on snow͞ice albedo, is still larger, 0.8 Ϯ 0.4 W͞m 2 . Here we estimate the magnitude of one component of the BC climate forcing: its effect on snow͞ice albedo.Several factors complicate evaluation of the BC snow͞albedo climate forcing and dictate the approach we use to estimate the forcing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.