A single embryonic stem cell (ESC) line can be repetitively cryopreserved, thawed, expanded, and differentiated into various cellular components serving as a potentially renewable and well-characterized stem cell source. Therefore, we determined whether ESCs could be used to reconstitute marrow and blood in major histocompatibility complex (MHC)-mismatched mice. To induce differentiation toward hematopoietic stem cells (HSCs) in vitro, ESCs were cultured in methylcellulose with stem cell factor, interleukin (IL)-3, and IL-6. ESC-derived, cytokine-induced HSCs (c-kit+/CD45+) were isolated by flow cytometry and injected either intra bone marrow or intravenously into lethally irradiated MHC-mismatched recipient mice. From 2 wk to 6 mo after injection, the peripheral blood demonstrated increasing ESC-derived mononuclear cells that included donor-derived T and B lymphocytes, monocytes, and granulocytes without clinical or histologic evidence of graft-versus-host disease (GVHD). Mixed lymphocyte culture assays demonstrated T cell tolerance to both recipient and donor but intact third party proliferative responses and interferon γ production. ESCs might be used as a renewable alternate marrow donor source that reconstitutes hematopoiesis with intact immune responsiveness without GVHD despite crossing MHC barriers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.