The precise role of each nitric oxide (NO) synthase (NOS) isoform in the pathobiology of asthma is not well established. Our objective was to investigate the contribution of constitutive NO synthase (cNOS) and inducible NOS (iNOS) isoforms to lung mechanics and inflammatory and remodeling responses in an experimental model of chronic allergic pulmonary inflammation. Guinea pigs were submitted to seven ovalbumin exposures with increasing doses (1 approximately 5 mg/ml) for 4 wk. The animals received either chronic L-NAME (N-nitro-L-arginine methyl ester, in drinking water) or 1,400 W (iNOS-specific inhibitor, intraperitoneal) treatments. At 72 h after the seventh inhalation of ovalbumin solution, animals were anesthetized, mechanically ventilated, exhaled NO was collected, and lung mechanical responses were evaluated before and after antigen challenge. Both L-NAME and 1,400 W treatments increased baseline resistance and decreased elastance of the respiratory system in nonsensitized animals. After challenge, L-NAME increased resistance of the respiratory system and collagen deposition on airways, and decreased peribronchial edema and mononuclear cell recruitment. Administration of 1,400 W reduced resistance of the respiratory system response, eosinophilic and mononuclear cell recruitment, and collagen and elastic fibers content in airways. L-NAME treatment reduced both iNOS- and neuronal NOS-positive eosinophils, and 1,400 W diminished only the number of eosinophils expressing iNOS. In this experimental model, inhibition of NOS-derived NO by L-NAME treatment amplifies bronchoconstriction and increases collagen deposition. However, blockage of only iNOS attenuates bronchoconstriction and inflammatory and remodeling processes.
Vascular remodeling is an important feature in asthma pathophysiology. Although investigations suggested that nitric oxide (NO) is involved in lung remodeling, little evidence established the role of inducible NO synthase (iNOS) isoform in bronchial vascular remodeling. The authors investigated if iNOS contribute to bronchial vascular remodeling induced by chronic allergic pulmonary inflammation. Guinea pigs were submitted to ovalbumin exposures with increasing doses (1∼5 mg/mL) for 4 weeks. Animals received 1400W (iNOS-specific inhibitor) treatment for 4 days beginning at 7th inhalation. Seventy-two hours after the 7th inhalation, animals were anesthetized, mechanical ventilated, exhaled NO was collected, and lungs were removed and submitted to picrosirius and resorcin-fuchsin stains and to immunohistochemistry for matrix metalloproteinase-9 (MMP-9), tissue inhibitor of metalloproteinase-1 (TIMP-1), and transforming growth factor-β (TGF-β). Collagen and elastic fiber deposition as well as MMP-9, TIMP-1, and TGF-β expression were increase in bronchial vascular wall in ovalbumin-exposed animals. The iNOS inhibition reduced all parameters studied. In this model, iNOS inhibition reduced the bronchial vascular extracellular remodeling, particularly controlling the collagen and elastic fibers deposition in pulmonary vessels. This effect can be associated to a reduction on TGF-β and on metalloproteinase-9/TIMP-1 vascular expression. It reveals new therapeutic strategies and some possible mechanism related to specific iNOS inhibition to control vascular remodeling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.