Campylobacteriosis is a collective description for infectious diseases caused by members of the bacterial genus Campylobacter. The only form of campylobacteriosis of major public health importance is Campylobacter enteritis due to C. jejuni and C. coli. Research and control efforts on the disease have been conducted more often in developed countries than developing countries. However, because of the increasing incidence, expanding spectrum of infections, potential of HIV-related deaths due to Campylobacter, and the availability of the complete genome sequence of C. jejuni NCTC 11168, interest in campylobacteriosis research and control in developing countries is growing. We present the distinguishing epidemiologic and clinical features of Campylobacter enteritis in developing countries relative to developed countries. National surveillance programs and international collaborations are needed to address the substantial gaps in the knowledge about the epidemiology of campylobacteriosis in developing countries.
BackgroundShiga toxin–producing Escherichia coli (STEC) O157:H7 is a well-recognized cause of bloody diarrhea and hemolytic-uremic syndrome (HUS). The ability of STEC strains to cause human disease is due to the production of Shiga toxins. The objectives of this study were to determinate the prevalence, serotypes, antibiotic susceptibility patterns and the genetic capability for Shiga toxin production in Escherichia coli (STEC) strains isolated from dairy cattle farms in two rural communities in the Eastern Cape Province of South Africa. MethodsFecal samples were collected between March and May 2014, from individual cattle (n = 400) in two commercial dairy farms having 800 and 120 cattle each.Three hundred presumptive isolates obtained were subjected to polymerase chain reactions (PCR) for identification of O157 serogroup and Shiga toxin producing genes (stx1, stx2) on genomic DNA extracted by boiling method. Susceptibility of the isolates to 17 antibiotics was carried out in vitro by the standardized agar disc-diffusion method. Results Based on direct PCR detection, 95 (31.7 %) isolates were identified as O157 serogroup. The genetic repertoire for Shiga toxin production was present in 84 (88.42 %) isolates distributed as stx1 (37), stx2 (38) and stx1/2 (9) respectively while 11 of the isolates did not harbor Shiga toxin producing genes. Multiple antibiotic resistances were observed among the isolates and genetic profiling of resistance genes identified blaampC 90 %, blaCMY 70 %, blaCTX-M 65 %, blaTEM 27 % and tetA 70 % and strA 80 % genes among the antimicrobial resistance determinants examined.ConclusionWe conclude that dairy cattle farms in the Eastern Cape Province are potential reservoirs of antibiotic resistance determinants in the province.
BackgroundEnterococci have emerged as an important opportunistic pathogen causing life-threatening infections in hospitals. The emergence of this pathogen is associated with a remarkable capacity to accumulate resistance to antimicrobials and multidrug-resistance particularly to vancomycin, erythromycin and streptomycin have become a major cause of concern for the infectious diseases community. In this paper, we report the prevalence of Enterococcus in respect to species distribution, their virulence and antibiogram profiles.MethodsFour hundred fecal samples were collected from two piggery farms in the Eastern Cape Province of South Africa. Enterococcus species were isolated and confirmed with generic specific primers targeting the tuf gene (encoding elongation factor). The confirmed isolates were speciated with enterococci species specific primers that aimed at delineating them into six species that are commonly associated with infections in humans. Antibiotic susceptibility testing was performed by disc diffusion method. Six virulence genes and antimicrobial resistance profiles of the isolates were evaluated molecularly.ResultsMolecular identification of the presumptive isolates confirmed 320 isolates as Enterococcus spp. Attempt at speciation of the isolates with primers specific for E. faecalis, E. durans, E. casseliflavus, E. hirae and E. faecium delineated them as follows: E. faecalis (12.5 %), E. hirae (31.25 %), E. durans (18.75 %) and E. faecium (37.5 %) while E. casseliflavus was not detected. All the isolates were resistant to vancomycin, streptomycin and cloxacillin, and to at least two different classes of antibiotics, with 300 (93.8 %) isolates being resistant to five or more antibiotics. Also, three out of the six virulence genes were detected in majority of the isolates and they are Adhesion of collagen in E. faecalis (ace) (96.88 %), gelatinase (gelE) (93.13 %) and surface protein (esp) (67.8 %).ConclusionThere was high prevalence of multi-resistant vancomycin Enterococcus spp. (VREs) in the fecal samples of pigs in the farms studied, and this poses health implications as vancomycin is an important drug in human medicine. Further studies are needed to determine the spread of vancomycin resistance among bacteria of human origin in the communities.
Background: Antimicrobial resistance in microorganisms are on the increase worldwide and are responsible for substantial cases of therapeutic failures. Resistance of species of Enterococcus to antibiotics is linked to their ability to acquire and disseminate antimicrobial resistance determinants in nature, and wastewater treatment plants (WWTPs) are considered to be one of the main reservoirs of such antibiotic resistant bacteria. We therefore determined the antimicrobial resistance and virulence profiles of some common Enterococcus spp that are known to be associated with human infections that were recovered from hospital wastewater and final effluent of the receiving wastewater treatment plant in Alice, Eastern Cape. Methods: Wastewater samples were simultaneously collected from two sites (Victoria hospital and final effluents of a municipal WWTP) in Alice at about one to two weeks interval during the months of July and August 2014. Samples were screened for the isolation of enterococci using standard microbiological methods. The isolates were profiled molecularly after targeted generic identification and speciation for the presence of virulence and antibiotic resistance genes. Results: Out of 66 presumptive isolates, 62 were confirmed to belong to the Enterococcus genusof which 30 were identified to be E. faecalis and 15 E. durans. The remaining isolates were not identified by the primers used in the screening procedure. Out of the six virulence genes that were targeted only three of them; ace, efaA, and gelE were detected. There was a very high phenotypic multiple resistance among the isolates and these were confirmed by genetic analyses. Conclusions: Analyses of the results obtained indicated that hospital wastewater may be one of the sources of antibiotic resistant bacteria to the receiving WWTP. Also, findings revealed that the final effluent discharged into the environment was contaminated with multi-resistant enterococci species thus posing a health hazard to the receiving aquatic environment as these could eventually be transmitted to humans and animals that are exposed to it.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.