A new molecular template permits nano-engineering of soft matter materials to optimize optical and optoelectronic properties.Organic materials offer exceptional electro-optic activity, bandwidth, and processability. They are also low-cost, flexible, and compatible with diverse materials. Hybrid devices (that combine organic materials with silicon technologies) offer chip-scale integration of electronics and photonics, which could support applications in telecommunications, high-performance computing, radio-frequency (RF) photonics, and sensing technologies. Such integration requires organic materials that are adaptable to a range of processing options and conditions. They also need to have optimal optical and optoelectronic properties, which depend on order and lattice dimensionality. It has proven very
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.