Aerobic organisms are continually subjected to environmental stressors that compromise redox homeostasis and induce cellular injury. In vascular smooth muscle cells (vSMCs), the activation/repression of redox-regulated genes after environmental stress often involves protein binding to cis-acting antioxidant response elements (AREs). The present study was conducted to identify proteins that participate in redox-regulated protein binding to human c-Ha-ras and mouse glutathione S-transferase A1 AREs in vSMCs after oxidant injury. Challenge of vSMCs with 0.3 or 3 M hydrogen peroxide, 3-methylcholanthrene, benzo[a]pyrene-7,8-diol, 3-hydroxy benzo[a]pyrene, and benzo[a]pyrene-3,6-quinone induced concentration-related increases in ARE protein binding. The profiles of ARE complex assembly were comparable, but exhibited chemical specificity. Pretreatment with 0.5 mM N-acetylcysteine inhibited activation of ARE protein binding in hydrogen peroxidetreated cells. Preparative electrophoretic mobility shift assays coupled to Western analysis identified NF-E2-related proteins 1 and 2 and JunD in complexes assembled on AREs. Polyethylenimine affinity and sequence-specific serial immobilized DNA affinity chromatography followed by N-terminal sequencing identified albumin precursor protein, phi AP3, and ␣-smooth muscle actin as members of the ARE signaling pathway. Sequence analysis of albumin protein revealed homology to the redox-regulated transcription factors Bach1 and 2, as well as cytoskeletal and molecular motor proteins. These results implicate albumin precursor protein, phi AP3, and ␣-smooth muscle actin as participants in redox sensing in vSMCs, and suggest that protein complex assembly involves interactions between leucine zipper and zinc finger transcription factors with cytoskeletal proteins.
Facilities (ABRF-PRG) to design a study to systematically assess the reproducibility of proteomic laboratories over an extended period of time. Developed as an open study, initially 64 participants were recruited from the broader mass spectrometry community to analyze provided aliquots of a six bovine protein tryptic digest mixture every month for a period of nine months. Data were uploaded to a central repository, and the operators answered an accompanying survey. Ultimately, 45 laboratories submitted a minimum of eight LC-MSMS raw data files collected in data-dependent acquisition (DDA) mode. No standard operating procedures were enforced; rather the participants were encouraged to analyze the samples according to usual practices in the laboratory. Unlike previous studies, this investigation was not designed to compare laboratories or instrument configuration, but rather to assess the temporal intralaboratory reproducibility. The outcome of the study was reassuring with 80% of the participating laboratories performing analyses at a medium to high level of reproducibility and quality over the 9-month period. For the groups that had one or more outlying experiments, the major contributing factor that correlated to the survey data was the performance of preventative maintenance prior to the LC-MSMS analyses. Thus, the Protein Research Group of the Association of Biomolecular Resource Facilities recommends that laboratories closely scrutinize the quality control data following such events. Additionally, improved quality control recording is imperative. This longitudinal study provides evidence that mass spectrometry-based proteomics is reproducible. When quality control measures are strictly adhered to, such reproducibility is comparable among many disparate groups. Data from the study are available via ProteomeXchange under the accession code PXD002114. Molecular & Cellular Proteomics 14: 10.1074/mcp.O115.051888, 3299-3309, 2015.The broad-reaching use and application of mass spectrometry-based proteomics in the international research commu-
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.