The concept of partial synchrony in a distributed system is introduced. Partial synchrony lies between the cases of a synchronous system and an asynchronous system. In a synchronous system, there is a known fixed upper bound Δ on the time required for a message to be sent from one processor to another and a known fixed upper bound Φ on the relative speeds of different processors. In an asynchronous system no fixed upper bounds Δ and Φ exist. In one version of partial synchrony, fixed bounds Δ and Φ exist, but they are not known a priori. The problem is to design protocols that work correctly in the partially synchronous system regardless of the actual values of the bounds Δ and Φ. In another version of partial synchrony, the bounds are known, but are only guaranteed to hold starting at some unknown time
T
, and protocols must be designed to work correctly regardless of when time
T
occurs. Fault-tolerant consensus protocols are given for various cases of partial synchrony and various fault models. Lower bounds that show in most cases that our protocols are optimal with respect to the number of faults tolerated are also given. Our consensus protocols for partially synchronous processors use new protocols for fault-tolerant “distributed clocks” that allow partially synchronous processors to reach some approximately common notion of time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.