Theoretical analyses and experimental studies of synthesized assemblages indicate that under particular circumstances species diversity can enhance community productivity through niche complementarity. It remains unclear whether this process has important effects in mature natural ecosystems where competitive feedbacks and complex environmental influences affect diversity-productivity relationships. In this study, we evaluated diversity-productivity relationships while statistically controlling for environmental influences in 12 natural grassland ecosystems. Because diversity-productivity relationships are conspicuously nonlinear, we developed a nonlinear structural equation modeling (SEM) methodology to separate the effects of diversity on productivity from the effects of productivity on diversity. Meta-analysis was used to summarize the SEM findings across studies. While competitive effects were readily detected, enhancement of production by diversity was not. These results suggest that the influence of small-scale diversity on productivity in mature natural systems is a weak force, both in absolute terms and relative to the effects of other controls on productivity.
Abstract. In this study we examine the factors associated with variations in species richness within a remnant tall‐grass prairie in order to gain insight into the relative importance of controlling variables. The study area was a small, isolated prairie surrounded by wetlands and located within the coastal prairie region, which occurs along the northwestern Gulf of Mexico coastal plain. Samples were taken along three transects that spanned the prairie. Parameters measured included micro‐elevation, soil characteristics, indications of recent disturbance, above‐ground biomass (including litter), light penetration through the plant canopy, and species richness. Species richness was found to correlate with micro‐elevation, certain soil parameters, and light penetration through the canopy, but not with above‐ground biomass. Structural equation analysis was used to assess the direct and indirect effects of micro‐elevation, soil properties, disturbance, and indicators of plant abundance on species richness. The results of this analysis showed that observed variations in species richness were primarily associated with variations in environmental effects (from soil and microtopography) and were largely unrelated to variations in measures of plant abundance (biomass and light penetration). These findings suggest that observed variations in species richness in this system primarily resulted from environmental effects on the species pool. These results fit with a growing body of information that suggests that environmental effects on species richness are of widespread importance.
Extensive hydrologic modifications in coastal regions across the world have occurred to support infrastructure development, altering the function of many coastal wetlands. Wetland restoration success is dependent on the existence of hydrologic regimes that support development of appropriate soils and the growth and persistence of wetland vegetation. In Florida, United States, the Comprehensive Everglades Restoration Program (CERP) seeks to restore, protect, and preserve water resources of the greater Everglades region. Herein we describe vegetation dynamics in a mangrove‐to‐marsh ecotone within the impact area of a CERP hydrologic restoration project currently under development. Vegetation communities are also described for a similar area outside the project area. We found that vegetation shifts within the impact area occurred over a 7‐year period; cover of herbaceous species varied by location, and an 88% increase in the total number of mangrove seedlings was documented. We attribute these shifts to the existing modified hydrologic regime, which is characterized by a low volume of freshwater sheet flow compared with historical conditions (i.e. before modification), as well as increased tidal influence. We also identified a significant trend of decreasing soil surface elevation at the impact area. The CERP restoration project is designed to increase freshwater sheet flow to the impact area. Information from our study characterizing existing vegetation dynamics prior to implementation of the restoration project is required to allow documentation of long‐term project effects on plant community composition and structure within a framework of background variation, thereby allowing assessment of the project's success in restoring critical ecosystem functions.
Abbreviations AvgeM = Avicennia germinans monoculture pot; AvgeS = Avicennia germinans single mangrove species mesocosm pot; AvLa = Avicennia germinans and Laguncularia racemosa mixed mangrove species mesocosm pot; LaraM = Laguncularia racemosa monoculture pot; LaraS = Laguncularia racemosa single mangrove species mesocosm pot; Meso = Mesocosm pot without mangrove species added. Nomenclature Integrated Taxonomic Information System (ITIS) AbstractQuestions: Does the presence of herbaceous vegetation affect the establishment success of mangrove tree species in the transition zone between subtropical coastal mangrove forests and marshes? How do plant-plant interactions in this transition zone respond to variation in two primary coastal environmental drivers?Location: Subtropical coastal region of the southern United States. Methods:We conducted a greenhouse study to better understand how abiotic factors affect plant species interactions in the mangrove-to-marsh transition zone, or ecotone. We manipulated salinity (fresh, brackish or salt water) and hydrologic conditions (continuously saturated or 20-cm tidal range) to simulate ecotonal environments. Propagules of the mangroves Avicennia germinans and Laguncularia racemosa were introduced to mesocosms containing an established marsh community. Both mangrove species were also introduced to containers lacking other vegetation. We monitored mangrove establishment success and survival over 22 mo. Mangrove growth was measured as stem height and above-ground biomass. Stem height, stem density and above-ground biomass of the dominant marsh species were documented.Results: Establishment success of A. germinans was reduced under saturated saltwater conditions, but establishment of L. racemosa was not affected by experimental treatments. There was complete mortality of A. germinans in mesocosms under freshwater conditions, and very low survival of L. racemosa. In contrast, survival of both species in monoculture under freshwater conditions exceeded 62%. The marsh species Distichlis spicata and Eleocharis cellulosa suppressed growth of both mangroves throughout the experiment, whereas the mangroves did not affect herbaceous species growth. The magnitude of growth suppression by marsh species varied with environmental conditions; suppression was often higher in saturated compared to tidal conditions, and higher in fresh and salt water compared to brackish water. Conclusions:Our results indicate that herbaceous marsh species can suppress mangrove early seedling growth. Depending on species composition and density, marsh plants can slow mangrove landward migration under predicted climate change scenarios as salinity in freshwater and oligohaline wetlands increases with rising sea levels. Change in the relative coverage of mangrove forests and marshes will depend on both the ability of marsh species to migrate further inland as mangroves advance, and the ability of shoreline mangroves to adjust to rising sea level through accretionary processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.