The accuracy of in vitro inhibition parameters in scaling to in vivo drug-drug interactions (DDI) was examined for over 40 drugs using seven human P450-selective marker activities in pooled human liver microsomes. These data were combined with other parameters (systemic C max , estimated hepatic inlet C max , fraction unbound, and fraction of the probe drug cleared by the inhibited enzyme) to predict increases in exposure to probe drugs, and the predictions were compared with in vivo DDI gathered from clinical studies reported in the scientific literature. For drugs that had been tested as precipitants of drug interactions for more than one P450 in vivo, the order of inhibitory potencies in vitro generally aligned with the magnitude of the in vivo interactions. With the exception of many drugs known to be mechanism-based inactivators, the use of in vitro IC 50 , the fraction of the affected drug metabolized by the target enzyme [f m(CYP) ] and an estimate of free hepatic inlet C max , was generally successful in identifying those drugs that cause at least a 2-fold increase in the exposure to P450 marker substrate drugs. For CYP3A, incorporation of inhibition of both hepatic and intestinal metabolism was needed for the prediction of DDI. Many CYP3A inhibitors showed a different inhibitory potency for three different CYP3A marker activities; however, these differences generally did not alter the conclusions regarding whether a drug would cause a CYP3A DDI in vivo. Overall, these findings support the conclusion that P450 in vitro inhibition data are valuable in designing clinical DDI study strategies and can be used to predict the magnitudes of DDI.Drug-drug interactions remain an important issue in clinical practice and the discovery and development of new drugs. With our recently advanced knowledge of the human cytochrome P450 (P450) enzymes and their roles in drug metabolism, more systematic approaches to the study of drug interactions have evolved. Previous to this knowledge, studies of drug-drug interactions for new drugs were carried out empirically; combinations of drugs chosen for investigation of drug-drug interactions were selected based on the potential for alteration in the pharmacokinetics or dynamics of a narrow therapeutic index drug (e.g., digoxin, theophylline, warfarin, phenytoin, etc.) or whether there was a high likelihood that the new drug would be frequently coprescribed with another agent for a given condition. However, with an increased understanding of drug-metabolizing enzymes and their roles in the metabolism of specific drugs, a more mechanistic approach to assessing drug-drug interactions can be taken. The results of clinical drug-drug interaction studies with one drug can be extrapolated to other drugs that are cleared by the same enzyme.In vitro drug-drug interaction data are necessary for devising mechanistically based clinical drug-drug interaction study strategies. The effects of new drugs on well characterized drug metabolism reactions known to be specific for various huma...
ABSTRACT:The oxidative and conjugative metabolism of sertraline was examined in vitro to identify the enzymes involved in the generation of N-desmethyl, deaminated, and N-carbamoyl-glucuronidated metabolites in humans. In human liver microsomes, sertraline was N-demethylated and deaminated by cytochrome P450 (P450) enzymes with overall K m values of 98 and 114 M, respectively, but the intrinsic clearance for N-demethylation was approximately 20-fold greater than for deamination. Using P450 isoform-selective inhibitors and recombinant heterologously expressed enzymes, it was demonstrated that several P450 enzymes catalyzed sertraline N-demethylation, with CYP2B6 contributing the greatest extent, and lesser contributions from CYP2C19, CYP2C9, CYP3A4, and CYP2D6. For deamination, data supported a role for CYP3A4 and CYP2C19. Purified human monoamine oxidases A and B also catalyzed sertraline deamination with comparable K m values (230-270 M). Monoamine oxidase B catalyzed the reaction approximately 3-fold faster than did monoamine oxidase A. Sertraline N-carbamoyl glucuronidation was measured in human liver microsomes in bicarbonate buffer and under a CO 2 atmosphere (K m ؍ 50 M) and was catalyzed at the fastest rate by recombinant human UGT2B7. The observation that multiple enzymes appear to be involved in sertraline metabolism suggests that there should be no single agent that could substantially alter the pharmacokinetics of sertraline, nor should there be any single drug-metabolizing enzyme genetic polymorphism (e.g., CYP2D6, CYP2C19, CYP2C9, UGT1A1) that could profoundly impact the pharmacokinetics of sertraline.
ABSTRACT:A novel relay method has been developed using cryopreserved human hepatocytes to measure intrinsic clearance of low-clearance compounds. The relay method involved transferring the supernatant from hepatocyte incubations to freshly thawed hepatocytes at the end of the 4-h incubation to prolong the exposure time to active enzymes in hepatocytes. An accumulative incubation time of 20 h or longer in hepatoctyes can be achieved using the method. The relay method was validated using seven commercial drugs (diazepam, disopyramide, theophylline, timolol, tolbutamide, S-warfarin, and zolmitriptan) that were metabolized by various cytochrome P450s with low human in vivo intrinsic clearance at approximately 2 to 15 ml ⅐ min ؊1 ⅐ kg ؊1. The results showed that the relay method produced excellent predictions of human in vivo clearance. The difference between in vitro and in vivo intrinsic clearance was within 2-fold for most compounds, which is similar to the standard prediction accuracy for moderate to high clearance compounds using hepatocytes. The relay method is a straightforward, relatively low cost, and easy-to-use new tool to address the challenges of low clearance in drug discovery and development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.