To address the long-standing need for more precise descriptions of natural microbial ecosystems, 16S rRNAs were used to track certain species and phylogenetically coherent groups of microorganisms in their natural setting without culturing. Speciesand group-specific 16S rRNA-targeted oligonucleotide hybridization probes were developed to enumerate various strains of Bacteroides succinogenes and Lachnospira multiparus-like organisms in the bovine rumen before, during, and after perturbation of that ecosystem by the addition of the ionophore antibiotic monensin. Based on probe hybridization, relative numbers of L. multiparus-like organisms were depressed about 2-fold during monensin addition and demonstrated a transient 5to 10-fold increase immediately after removal of the antibiotic from the diet. The most pronounced population changes were observed among different strains of B. succinogenes, as evaluated by three hybridization probes. One probe hybridized to all strains, whereas the other two identified genetically distinct groups represented by strains isolated from the rumen and from the ceca of nonruminants. The rumen-type strains predominated on most days (ca. 0.2 to 0.8% of total ribosome numbers). Their proportion transiently increased about fivefold immediately after the addition of monensin to the feed and then transiently fell below the average premonensin level. During this time (ca. 2 weeks after monensin addition) the cecal type predominated (ca. 0.1 to 0.2%). Cultural enumeration of B. succinogenes on nonselective agar and by observing clearings in cellulose agar media were largely unsuccessful due to the low number of organisms present and the predominance of other cellulolytic species. The results demonstrate the utility of rRNA-targeted hybridization to monitor complex microbial communities and are most consistent with the hypothesis that altered microbial metabolism, rather than altered population composition, is primarily responsible for changes in ruminal fermentation patterns resulting from the feeding of monensin.
The fibrolytic microbiota of the human large intestine was examined to determine the numbers and types of cellulolytic and hemicellulolytic bacteria present. Fecal samples from each of five individuals contained bacteria capable of degrading the hydrated cellulose in spinach and in wheat straw pretreated with alkaline hydrogen peroxide (AHP-WS), whereas degradation of the relatively crystalline cellulose in Whatman no. 1 filter paper (PMC) was detected for only one of the five samples. The mean concentration of cellulolytic bacteria, estimated with AHP-WS as a substrate, was 1.2 X 10(8)/ml of feces. Pure cultures of bacteria isolated on AHP-WS were able to degrade PMC, indicating that interactions with other microbes were primarily responsible for previous low success rates in detecting fecal cellulolytic bacteria with PMC as a substrate. The cellulolytic bacteria included Ruminococcus spp., Clostridium sp., and two unidentified strains. The mean concentration of hemicellulolytic bacteria, estimated with larchwood xylan as a substrate, was 1.8 X 10(10)/ml of feces. The hemicellulose-degrading bacteria included Butyrivibrio sp., Clostridium sp., Bacteroides sp., and two unidentified strains, as well as four of the five cellulolytic strains. This work demonstrates that many humans harbor intestinal cellulolytic bacteria and that a hydrated cellulose source such as AHP-WS is necessary for their consistent detection and isolation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.