-Atrial fibrillation (AF) is frequently associated with enhanced inflammatory response. The "NACHT, LRR and PYD domain containing protein 3" (NLRP3)-inflammasome mediates caspase-1 activation and interleukin-1β release in immune cells, but is not known to play a role in cardiomyocytes (CMs). Here, we assessed the role of CM NLRP3-inflammasome in AF. -NLRP3-inflammasome activation was assessed by immunoblot in atrial whole-tissue lysates and CMs from patients with paroxysmal (pAF) or long-standing persistent (chronic) AF (cAF). To determine whether CM-specific activation of NLPR3 is sufficient to promote AF, a CM-specific knock-in mouse model expressing constitutively active NLRP3 (CM-KI) was established. In vivo electrophysiology was used to assess atrial arrhythmia vulnerability. To evaluate the mechanism of AF, electrical activation pattern, Ca spark frequency (CaSF), atrial effective refractory period (AERP), and morphology of atria were evaluated in CM-KI mice and WT littermates. -NLRP3-inflammasome activity was increased in atrial CMs of pAF and cAF patients. CM-KI mice developed spontaneous premature atrial contractions and inducible AF, which was attenuated by a specific NLRP3-inflammasome inhibitor, MCC950. CM-KI mice exhibited ectopic activity, abnormal sarcoplasmic-reticulum Ca-release, AERP shortening and atrial hypertrophy. Adeno-associated virus subtype-9 mediated CM-specific knockdown of suppressed AF development in CM-KI mice. Finally, genetic inhibition of prevented AF development in CREM transgenic mice, a well-characterized mouse model of spontaneous AF. -Our study establishes a novel pathophysiological role for CM NLRP3-inflammasome signaling with a mechanistic link to the pathogenesis of AF, and establishes inhibition of NLRP3 as a potential novel AF-therapy approach.
L1 function is necessary for the guidance of corticospinal axons across the pyramidal decussation in mice. Some of the defects in the corticospinal tract of humans with mutations in L1 could be due to errors in axon guidance at the pyramidal decussation.
Atrial fibrillation (AF), the most prevalent arrhythmia, is often associated with enhanced inflammatory response. Emerging evidence point to a causal role of inflammatory signaling pathways in the evolution of atrial electrical, calcium handling and structural remodeling, which create the substrate of AF development. In this review, we discuss the clinical evidence supporting the association between inflammatory indices and AF development, the molecular and cellular mechanisms of AF, which appear to involve multiple canonical inflammatory pathways, and the potential of anti-inflammatory therapeutic approaches in AF prevention/treatment.
Aims Obesity, an established risk factor of atrial fibrillation (AF), is frequently associated with enhanced inflammatory response. However, whether inflammatory signaling is causally linked to AF pathogenesis in obesity remains elusive. We recently demonstrated that the constitutive activation of the ‘NACHT, LRR & PYD Domains-containing Protein 3’ (NLRP3) inflammasome promotes AF susceptibility. In this study, we hypothesized that the NLRP3 inflammasome is a key driver of obesity-induced AF. Methods and Results Western blotting was performed to determine the level of NLRP3 inflammasome activation in atrial tissues of obese patients, sheep, and diet-induced obese (DIO) mice. The increased bodyweight in patients, sheep, and mice was associated with enhanced NLRP3-inflammasome activation. To determine whether NLRP3 contributes to the obesity-induced atrial arrhythmogenesis, wildtype (WT) and NLRP3 homozygous knockout (NLRP3-/-) mice were subjected to high-fat diet (HFD) or normal chow (NC) for 10 weeks. Relative to NC-fed WT mice, HFD-fed WT mice were more susceptible to pacing-induced AF with longer AF duration. In contrast, HFD-fed NLRP3-/- mice were resistant to pacing-induced AF. Optical mapping in DIO mice revealed an arrhythmogenic substrate characterized by abbreviated refractoriness and action potential duration (APD), two key determinants of reentry-promoting electrical remodeling. Upregulation of ultra-rapid delayed-rectifier K+-channel (Kv1.5) contributed to the shortening of atrial refractoriness. Increased profibrotic signaling and fibrosis along with abnormal Ca2+ release from sarcoplasmic reticulum (SR) accompanied atrial arrhythmogenesis in DIO mice. Conversely, genetic ablation of Nlrp3 (NLRP3-/-) in HFD-fed mice prevented the increases in Kv1.5 and the evolution of electrical remodeling, the upregulation of profibrotic genes, and abnormal SR Ca2+ release in DIO mice. Conclusions These results demonstrate that the atrial NLRP3 inflammasome is a key driver of obesity-induced atrial arrhythmogenesis and establishes a mechanistic link between obesity-induced AF and NLRP3-inflammasome activation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.