Robots have been used in a variety of education, therapy or entertainment contexts. This paper introduces the novel application of using humanoid robots for robot-mediated interviews. An experimental study examines how children’s responses towards the humanoid robot KASPAR in an interview context differ in comparison to their interaction with a human in a similar setting. Twenty-one children aged between 7 and 9 took part in this study. Each child participated in two interviews, one with an adult and one with a humanoid robot. Measures include the behavioural coding of the children’s behaviour during the interviews and questionnaire data. The questions in these interviews focused on a special event that had recently taken place in the school. The results reveal that the children interacted with KASPAR very similar to how they interacted with a human interviewer. The quantitative behaviour analysis reveal that the most notable difference between the interviews with KASPAR and the human were the duration of the interviews, the eye gaze directed towards the different interviewers, and the response time of the interviewers. These results are discussed in light of future work towards developing KASPAR as an ‘interviewer’ for young children in application areas where a robot may have advantages over a human interviewer, e.g. in police, social services, or healthcare applications.
In the late 1990s using robotic technology to assist children with Autistic Spectrum Condition (ASD) emerged as a potentially useful area of research. Since then the field of assistive robotics for children with ASD has grown considerably with many academics trialling different robots and approaches. One such robot is the humanoid robot Kaspar that was originally developed in 2005 and has continually been built upon since, taking advantage of technological developments along the way. A key principle in the development of Kaspar since its creation has been to ensure that all of the advances to the platform are driven by the requirements of the users. In this paper we discuss the development of Kaspar's design and explain the rationale behind each change to the platform. Designing and building a humanoid robot to interact with and help children with ASD is a multidisciplinary challenge that requires knowledge of the mechanical engineering, electrical engineering, Human-Computer Interaction (HCI), Child-Robot Interaction (CRI) and knowledge of ASD. The Kaspar robot has benefited from the wealth of knowledge accrued over years of experience in robot-assisted therapy for children with ASD. By showing the journey of how the Kaspar robot has developed we aim to assist others in the field develop such technologies further.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.