This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Several lines of evidence have shown that defects in the endo-lysosomal autophagy degradation pathway and the ubiquitin-proteasome system play a role in Alzheimer’s Disease (AD) pathogenesis and pathophysiology. Early pathological changes, such as marked enlargement of endosomal compartments, gradual accumulation of autophagic vacuoles (AVs) and lysosome dyshomeostasis, are well-recognized in AD. In addition to these pathological indicators, many genetic variants of key regulators in the endo-lysosomal autophagy networks and the ubiquitin-proteasome system have been found to be associated with AD. Furthermore, altered expression levels of key proteins in these pathways have been found in AD human brain tissues, primary cells and AD mouse models.
In this review, we discuss potential disease mechanisms underlying the dysregulation of protein homeostasis governing systems. While the importance of two major protein degradation pathways in AD pathogenesis has been highlighted, targeted therapy at key components of these pathways has great potential in developing novel therapeutic interventions for AD. Future investigations are needed to define molecular mechanisms by which these complex regulatory systems become malfunctional at specific stages of AD development and progression, which will facilitate future development of novel therapeutic interventions. It is also critical to investigate all key components of the protein degradation pathways, both upstream and downstream, to improve our abilities to manipulate transport pathways with higher efficacy and less side effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.