Urgent need for conservation and restoration measures to improve landscape connectivity.
The practice of ecological restoration is a primary option for increasing levels of biodiversity by modifying human-altered ecosystems. The scientific discipline of restoration ecology provides conceptual guidance and tests of restoration strategies, with the ultimate goal of predictive landscape restoration. I construct a conceptual model for restoration of biodiversity, based on site-level (e.g., biotic and abiotic) conditions, landscape (e.g, interpatch connectivity and patch geometry), and historical factors (e.g., species arrival order and land-use legacies). I then ask how well restoration ecology has addressed the various components of this model. During the past decade, restoration research has focused largely on how the restoration of site-level factors promotes species diversity-primarily of plants. Relatively little attention has been paid to how landscape or historical factors interplay with restoration, how restoration influences functional and genetic components of biodiversity, or how a suite of less-studied taxa might be restored. I suggest that the high level of variation seen in restoration outcomes might be explained, at least in part, by the contingencies placed on site-level restoration by landscape and historical factors and then present a number of avenues for future research to address these often ignored linkages in the biodiversity restoration model. Such work will require carefully conducted restoration experiments set across multiple sites and many years. It is my hope that by considering how space and time influence restoration, we might move restoration ecology in a direction of stronger prediction, conducted across landscapes, thus providing feasible restoration strategies that work at scales over which biodiversity conservation occurs.
Summary1. Ecological restoration is a global priority that holds great potential for benefiting natural ecosystems, but restoration outcomes are notoriously unpredictable. Resolving this unpredictability represents a major, but critical challenge to the science of restoration ecology. 2. In an effort to move restoration ecology toward a more predictive science, we consider the key issue of variability. Typically, restoration outcomes vary relative to goals (i.e. reference or desired future conditions) and with respect to the outcomes of other restoration efforts. The field of restoration ecology has largely considered only this first type of variation, often focusing on an oversimplified success vs. failure dichotomy. The causes of variation, particularly among restoration efforts, remain poorly understood for most systems. 3. Variation associated with restoration outcomes is a consequence of how, where and when restoration is conducted; variation is also influenced by how the outcome of restoration is measured. We propose that variation should decrease with the number of factors constraining restoration and increase with the specificity of the goal. When factors (e.g. harsh environmental conditions, limited species reintroductions) preclude most species, little variation will exist among restorations, particularly when goals are associated with metrics such as physical structure, where species may be broadly interchangeable. Conversely, when few constraints to species membership exist, substantial variation may result and this will be most pronounced when restoration is assessed by metrics such as taxonomic composition. 4. Synthesis and applications. The variability we observe during restoration results from both restoration context (how, where and when restoration is conducted) and how we evaluate restoration outcomes. To advance the predictive capacity of restoration, we outline a research agenda that considers metrics of restoration outcomes, the drivers of variation among existing restoration efforts, experiments to quantify and understand variation in restoration outcomes, and the development of models to organise, interpret and forecast restoration outcomes.
Biodiversity is declining in many local communities while also becoming increasingly homogenized across space. Experiments show that local plant species loss reduces ecosystem functioning and services, but the role of spatial homogenization of community composition and the potential interaction between diversity at different scales in maintaining ecosystem functioning remains unclear, especially when many functions are considered (ecosystem multifunctionality). We present an analysis of eight ecosystem functions measured in 65 grasslands worldwide. We find that more diverse grasslands-those with both species-rich local communities (α-diversity) and large compositional differences among localities (β-diversity)-had higher levels of multifunctionality. Moreover, α- and β-diversity synergistically affected multifunctionality, with higher levels of diversity at one scale amplifying the contribution to ecological functions at the other scale. The identity of species influencing ecosystem functioning differed among functions and across local communities, explaining why more diverse grasslands maintained greater functionality when more functions and localities were considered. These results were robust to variation in environmental drivers. Our findings reveal that plant diversity, at both local and landscape scales, contributes to the maintenance of multiple ecosystem services provided by grasslands. Preserving ecosystem functioning therefore requires conservation of biodiversity both within and among ecological communities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.