Railways are the most energy-efficient land-based mode of transport, and electrification is the most energy-efficient way to power the trains. There are many existing solutions to supply the trains with electricity. Regardless of which particular technology is chosen, it is beneficial to interconnect the public power grids to grids supplying power to the railways. This paper shows that the most efficient, flexible, and gentle-for-the-public-grid way of doing that is through powerelectronics-based power converters. Converters offer great benefits regardless of whether the overhead contact lines are of DC-type or AC type, and regardless of the AC grid frequency. This paper presents neither new theory nor new experimental results. Based on already available information, this paper presents logical arguments leading to this conclusion from collected facts. Over time what used to be advanced and high-cost equipment earlier can nowadays be purchased at reasonable cost. It is obvious that for most electrically-fed railways, the use of modern power converters is attractive. Where the individual trains are high consumers of energy, the railway gradients are substantial, and the public grids feeding the railway are weak, the use of converters would be technically desirable, if not necessary for electrification.It is expected that more high-speed railways will be built, and more existing railways will be electrified in the foreseeable future. This paper could provide some insights to infrastructure owners and decision makers in railway administrations about value additions that converter-fed electric railways would provide.
This paper presents an equivalent model that allows representing bi-voltage autotransformer-based systems (such as 2 25 kV ac, 2 15 kV ac) as if they were monovoltage systems. This model can be used for symmetrical (such as 2 25-kV 50-Hz systems) and unsymmetrical (such as 12/24-kV 25-Hz systems) configurations. It is based on two simplifying hypotheses that establish relationships between currents and voltages in the positive and negative phases. These hypotheses are discussed and the accuracy of the model is evaluated by comparing the results with a detailed conventional model of power-supply systems.
Abstract-For AC railway power supply systems with a different frequency than the public grid, high-voltage AC (HVAC) transmission lines are common, connected to the catenary by transformers. This paper suggests an alternative design based on an HVDC (High Voltage DC) feeder, which is connected to the catenary by converters. Such an HVDC line would also be appropriate for DC-fed railways and AC-fed railways working at public-grid frequency.The converter stations between the public grid and the HVDC feeder can be sparsely distributed, not denser than on 100 km distances, whereas the converters connecting the HVDC feeder to the catenary are distributed denser. Their ratings can be lower than present-day substation transformers or converters, since the power flows can be fully controlled.Despite a relatively low power rating, the proposed converters can be highly efficient due to the use of medium frequency technology. The proposed feeding system results in lower material usage, lower losses and higher controllability compared to present solutions.Simulations of the proposed solution show clear advantages regarding transmission losses and voltages compared to conventional systems, especially for cases with weak feeding, and when there are substantial amounts of regeneration from the trains.
In present-day railway power supply systems using an AC frequency lower than the one in the public power system of 50/60 Hz, high voltage overhead transmission lines are used as one measure of strengthening the railway power supply system grids. This option may be economically beneficial, compared to strengthening the grid purely by increasing the density of converter stations or increasing the cross section areas of the overhead catenary wires. High voltage AC transmission lines in the railway power supply system allow larger distances between converter stations than would otherwise be possible for a given amount of train traffic. Moreover, the introduction of AC transmission lines implies reduced line losses and reduced voltage level fluctuations at the catenary for a given amount of train traffic. However, due to the increased public and government resistance for additional overhead high voltage AC transmission lines in general, different alternatives will be needed for the future improvements and strengthening of railway power systems. For a more sustainable transport sector, the share and amount of railway traffic needs to increase, in which case such a strengthening becomes inevitable. Earlier, usage of VSC-HVDC transmission cables has been proposed as one alternative to overhead AC transmission lines. One of the main benefits with VSC-HVDC transmission is that control of power flows in the railway power systems is easier and that less converter capacity may be needed. Technically, VSC-HVDC transmission for railway power systems is a competitive solution as it offers a large variety of control options. However, there might be other more economical alternatives reducing the overall impedance in the railway power system. In public power systems with the frequency of 50/60 Hz, an excess of reactive power production in lowly utilized cables imposes an obstacle in replacing overhead transmission lines with cables. In low frequency AC railway power system, the capacitive properties are less significant allowing longer cables compared to 50/60 Hz power systems. Moreover, in converter-fed railways, some kind of reactive compensation will automatically be applied during low-load. At each converter station, voltage control is already present following the railway operation tradition. Therefore, in this paper, we propose AC cables as a measure of strengthening low-frequency AC railway power systems. The paper compares the electrical performances of two alternative reinforcement cable solutions with the base case of no reinforcement. The options of disconnecting or toggling the cables at low load as well as the automatic reactive compensation by converter voltage control are considered. Losses and voltage levels are compared for the different solutions. Investment costs and other relevant issues are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.