Estrogen receptor (ER)-negative tumors represent 20–30% of all breast cancers, with a higher proportion occurring in younger women and women of African ancestry1. The etiology2 and clinical behavior3 of ER-negative tumors are different from those of tumors expressing ER (ER positive), including differences in genetic predisposition4. To identify susceptibility loci specific to ER-negative disease, we combined in a meta-analysis 3 genome-wide association studies of 4,193 ER-negative breast cancer cases and 35,194 controls with a series of 40 follow-up studies (6,514 cases and 41,455 controls), genotyped using a custom Illumina array, iCOGS, developed by the Collaborative Oncological Gene-environment Study (COGS). SNPs at four loci, 1q32.1 (MDM4, P = 2.1 × 10−12 and LGR6, P = 1.4 × 10−8), 2p24.1 (P = 4.6 × 10−8) and 16q12.2 (FTO, P = 4.0 × 10−8), were associated with ER-negative but not ER-positive breast cancer (P > 0.05). These findings provide further evidence for distinct etiological pathways associated with invasive ER-positive and ER-negative breast cancers.
Genome-wide association studies (GWAS) of breast cancer defined by hormone receptor status have revealed loci contributing to susceptibility of estrogen receptor (ER)-negative subtypes. To identify additional genetic variants for ER-negative breast cancer, we conducted the largest meta-analysis of ER-negative disease to date, comprising 4754 ER-negative cases and 31 663 controls from three GWAS: NCI Breast and Prostate Cancer Cohort Consortium (BPC3) (2188 ER-negative cases; 25 519 controls of European ancestry), Triple Negative Breast Cancer Consortium (TNBCC) (1562 triple negative cases; 3399 controls of European ancestry) and African American Breast Cancer Consortium (AABC) (1004 ER-negative cases; 2745 controls). We performed in silico replication of 86 SNPs at P ≤ 1 × 10(-5) in an additional 11 209 breast cancer cases (946 with ER-negative disease) and 16 057 controls of Japanese, Latino and European ancestry. We identified two novel loci for breast cancer at 20q11 and 6q14. SNP rs2284378 at 20q11 was associated with ER-negative breast cancer (combined two-stage OR = 1.16; P = 1.1 × 10(-8)) but showed a weaker association with overall breast cancer (OR = 1.08, P = 1.3 × 10(-6)) based on 17 869 cases and 43 745 controls and no association with ER-positive disease (OR = 1.01, P = 0.67) based on 9965 cases and 22 902 controls. Similarly, rs17530068 at 6q14 was associated with breast cancer (OR = 1.12; P = 1.1 × 10(-9)), and with both ER-positive (OR = 1.09; P = 1.5 × 10(-5)) and ER-negative (OR = 1.16, P = 2.5 × 10(-7)) disease. We also confirmed three known loci associated with ER-negative (19p13) and both ER-negative and ER-positive breast cancer (6q25 and 12p11). Our results highlight the value of large-scale collaborative studies to identify novel breast cancer risk loci.
Genetic and environmental risk factors and their interactions contribute to the development of complex diseases. In this review, we discuss methodological issues involved in investigating gene -environment (G Â E) interactions in genetic -epidemiological studies of complex diseases and their potential relevance for clinical application. Although there are some important examples of interactions and applications, the widespread use of the knowledge about G Â E interaction for targeted intervention or personalized treatment (pharmacogenetics) is still beyond current means. This is due to the fact that convincing evidence and high predictive or discriminative power are necessary conditions for usefulness in clinical practice. We attempt to clarify conceptual differences of the term 'interaction' in the statistical and biological sciences, since precise definitions are important for the interpretation of results. We argue that the investigation of G Â E interactions is more rewarding for the detailed characterization of identified disease genes (ie at advanced stages of genetic research) and the stratified analysis of environmental effects by genotype or vice versa. Advantages and disadvantages of different epidemiological study designs are given and sample size requirements are exemplified. These issues as well as a critical appraisal of common methodological concerns are finally discussed.
This article presents a six-rule algorithm for the reconstruction of multiple minimum-recombinant haplotype configurations in pedigrees. The algorithm has three major features: First, it allows exhaustive search of all possible haplotype configurations under the criterion that there are minimum recombinants between markers. Second, its computational requirement is on the order of O(J(2)L(3)) in current implementation, where J is the family size and L is the number of marker loci under analysis. Third, it applies to various pedigree structures, with and without consanguinity relationship, and allows missing alleles to be imputed, during the haplotyping process, from their identical-by-descent copies. Haplotyping examples are provided using both published and simulated data sets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.