The epidermal growth factor receptor (EGFR) is a growth factor receptor that induces cell differentiation and proliferation upon activation through the binding of one of its ligands. The receptor is located at the cell surface, where the binding of a ligand activates a tyrosine kinase in the intracellular region of the receptor. This tyrosine kinase phosphorylates a number of intracellular substrates that activates pathways leading to cell growth, DNA synthesis and the expression of oncogenes such as fos and jun. EGFR is thought to be involved the development of cancer, as the EGFR gene is often amplified, and/or mutated in cancer cells. In this review we will focus on: (I) the structure and function of EGFR, (II) implications of receptor/ligand coexpression and EGFR mutations or overexpression, (III) its effect on cancer cells, (IV) the development of the malignant phenotype and (V) the clinical aspects of therapeutic targeting of EGFR.
Nonsteroidal antiinf lammatory drugs reduce the risk of colon cancer, possibly via cyclooxygenase (COX) inhibition. The growth factor-inducible COX-2, which is overexpressed in neoplastic colonic tissue, is an attractive target to mediate this effect. Herein we have exploited the ability of a human colon cancer cell line, HCA-7 Colony 29, to polarize when cultured on Transwell (Costar) filters to study COX-2 production and the vectorial release of prostaglandins (PGs). Administration of type ␣ transforming growth factor to the basolateral compartment, in which the epidermal growth factor receptor (EGFR) resides, results in a marked induction of COX-2 immunoreactivity at the base of the cells and the unexpected appearance of COX-2 in the nucleus. The increase in COX-2 protein is associated with a dose-and time-dependent increase in PG levels in the basolateral, but not apical, medium. Amphiregulin is the most abundantly expressed EGFR ligand in these cells, and the protein is present at the basolateral surface. EGFR blockade reduces baseline COX-2 immunoreactivity, PG levels, and mitogenesis in a concentration-dependent manner. Two specific COX-2 inhibitors, SC-58125 and NS 398, also, in a dose-dependent manner, attenuate baseline and type ␣ transforming growth factor-stimulated mitogenesis, although PG levels are decreased >90% at all concentrations of inhibitor tested. These findings show that activation of the EGFR stimulates COX-2 production and its translocation to the nucleus, vectorial release of PGs, and mitogenesis in polarized HCA-7 Colony 29 cells.In the gastrointestinal tract, prostaglandins (PGs) mediate important functions, including motility, vascular tone, angiogenesis, mucosal protection, and immune responsiveness (1). Inasmuch as epithelial cells are capable of PG synthesis, it is feasible that PGs synthesized in the gastrointestinal epithelium regulate these functions by paracrine pathways in response to luminal or serosal stimuli. Although data exist in support of vectorial release of PGs in the isolated rat colon (2), as well as in other tissues and polarized kidney-derived cells (3-5), regulatory mechanisms have not been defined more precisely.Cyclooxygenases (COXs) are key enzymes in the conversion of arachidonic acid (AA) to PGs and other eicosanoids. Two isoforms of the enzyme have been characterized. COX-1 in most cells is expressed constitutively, and a second inducible form known as COX-2 has been identified (refs. 6-8; for review see ref. 9). Recent observations indicate that many colonic polyps and cancers overexpress COX-2 (10-12) and that inhibition of this enzyme by nonsteroidal antiinflammatory drugs decreases the risk of colonic neoplasia (13-20), emphasizing the importance of defining potential autocrine and paracrine pathways for regulation of gastrointestinal epithelial growth by COX. Signaling through the epidermal growth factor receptor (EGFR) induces COX-2 expression, and unregulated overexpression of COX-2 results in a tumorigenic phenotype in the rat intestinal e...
Nitrogen‐containing bisphosphonates (NCBPs) have been widely used as standard supportive therapy to reduce skeletal‐related events (SREs) in myeloma patients through suppression of osteoclast activity. In various prospective randomized trials that were performed following preliminary reports concerning efficacy, NCBPs have shown a significant beneficial effect on myeloma bone disease through both suppression of bone resorption and direct antimyeloma activity. Thus, NCBPs have an influence on many types of human cells. In this study, we examined the effect of an NCBP (YM‐175) on an apoptosis of a monocytic cell line and of human native monocytes/macrophages and dendritic cells (DCs). We confirmed that monocytes, monocyte‐derived macrophages, DCs, and a monoblastic cell line (THP‐1) showed dose‐dependent and time‐dependent apoptosis related to the activation of caspases after exposure to YM‐175 at concentrations below that at which the apoptosis of myeloma cell lines was induced. Such apoptosis of monocytic cells was suppressed by the addition of farnesol or geranylgeraniol. These findings suggest that the inhibition of monocyte‐lineage cells or DCs by NCBPs might interfere with phagocytic activity or pathogen‐presenting activity. Am. J. Hematol. 2012. © 2012 Wiley Periodicals, Inc.
Summary Colonic enterocytes, like many epithelial cells in vivo, are polarized with functionally distinct apical and basolateral membrane domains. The aims of this study were to characterize the endogenous epidermal growth factor (EGF)-like ligands expressed in two polarizing colon cancer cell lines, HCA-7 Colony 29 (HCA-7) and Caco-2, and to examine the effects of cell polarity on EGF receptor-mediated mitogenesis. HCA-7 and Caco-2 cells were grown on plastic, or as a polarized monolayer on Transwell filters. Cell proliferation was measured by 3 H-thymidine incorporation and EGF receptor (EGFR) binding was assessed by Scatchard analysis. EGFR ligand expression was determined by Northern blot analysis, reverse transcription polymerase chain reaction, metabolic labelling and confocal microscopy. We found that amphiregulin (AR) was the most abundant EGFR ligand expressed in HCA-7 and Caco-2 cells. AR was localized to the basolateral surface and detected in basolateral-conditioned medium. Basolateral administration of neutralizing AR antibodies significantly reduced basal DNA replication. A single class of high-affinity EGFRs was detected in the basolateral compartment, whereas the apical compartment of polarized cells, and cells cultured on plastic, displayed two classes of receptor affinity. Basolateral administration of transforming growth factor alpha (TGF-α) or an EGFR neutralizing antibody also resulted in a dose-dependent stimulation or attenuation, respectively, of DNA replication. However, no mitogenic response was observed when these agents were added to the apical compartment or to confluent cells cultured on plastic. We conclude that amphiregulin acts as an autocrine growth factor in HCA-7 and Caco-2 cells, and EGFR ligand-induced proliferation is influenced by cellular polarity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.