The innervation of the cranial vessels by the trigeminal nerve, the trigeminovascular system, has recently been the subject of study in view of its possible role in the mediation of some aspects of migraine. Since stimulation of the trigeminal ganglion in humans leads to facial pain and flushing and associated release of powerful neuropeptide vasodilator substances, their local release into the extracerebral circulation of humans was determined in patients who had either common or classic migraine. Venous blood was sampled from both the external jugular and cubital fossa ipsilateral to the side of headache. Plasma levels of neuropeptide Y, vasoactive intestinal polypeptide, substance P, and calcitonin gene-related peptide were determined using sensitive radioimmunoassays for each peptide, and values for the cubital fossa and external jugular and a control population were compared. A substantial elevation of the calcitonin gene-related peptide level in the external jugular but not the cubital fossa blood was seen in both classic and common migraine. The increase seen in classic migraine was greater than that seen with common migraine. The other peptides measured were unaltered. This finding may have importance in the pathophysiology of migraine.
Both clinical and physiological consideration of migraine suggests that the pathophysiology of the syndrome is intimately linked to the trigeminal innervation of the cranial vessels, the trigeminovascular system. Studies were conducted in cats and humans to examine the interaction of these systems with the effective acute antimigraine drugs dihydroergotamine and sumatriptan. In the animal studies cats were anesthetized and prepared for routine physiological monitoring as well as for blood sampling from the external jugular veins. Cerebral blood flow was monitored continuously using laser Doppler flowmetry and the effect of trigeminal ganglion stimulation on both cerebral blood flow and jugular vein peptide levels determined prior to and after administration of either sumatriptan or dihydroergotamine. Stimulation of the trigeminal ganglion led to a frequency-dependent increase in cerebral blood flow, with a mean maximum of 43 +/- 9% at a stimulus frequency of 20 per second. There was a marked reduction in these responses by some 50% after administration of either sumatriptan or dihydroergotamine. Trigeminal ganglion stimulation at a frequency of 5 per second also led to a release into the cranial circulation of calcitonin gene-related peptide (CGRP), with the level rising from 67 +/- 3 to 82 +/- 5 pmol/liter on the side of stimulation. These increases were also markedly antagonized by both sumatriptan and dihydroergotamine. Human studies were conducted as part of the overall evaluation of sumatriptan for the treatment of acute migraine. In 7 of 8 patients responding to subcutaneous sumatriptan administration, elevated CGRP levels (60 +/- 8 pmol/liter) were normalized, with the headache being relieved (40 +/- 8 pmol/liter).(ABSTRACT TRUNCATED AT 250 WORDS)
Treatment of migraine is on the cusp of a new era with the development of drugs that target the trigeminal sensory neuropeptide calcitonin gene-related peptide (CGRP) or its receptor. Several of these drugs are expected to receive approval for use in migraine headache in 2018 and 2019. CGRP-related therapies offer considerable improvements over existing drugs as they are the first to be designed specifically to act on the trigeminal pain system, they are more specific and they seem to have few or no adverse effects. CGRP receptor antagonists such as ubrogepant are effective for acute relief of migraine headache, whereas monoclonal antibodies against CGRP (eptinezumab, fremanezumab and galcanezumab) or the CGRP receptor (erenumab) effectively prevent migraine attacks. As these drugs come into clinical use, we provide an overview of knowledge that has led to successful development of these drugs. We describe the biology of CGRP signalling, summarize key clinical evidence for the role of CGRP in migraine headache, including the efficacy of CGRP-targeted treatment, and synthesize what is known about the role of CGRP in the trigeminovascular system. Finally, we consider how the latest findings provide new insight into the central role of the trigeminal ganglion in the pathophysiology of migraine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.