Abstract.The weighted pseudoinverse providing the minimum semi-norm solution of the weighted linear least squares problem is studied. It is shown that it has properties analogous to those of the Moore-Penrose pseudoinverse. The relation between the weighted pseudoinverse and generalized singular values is explained. The weighted pseudoinverse theory is used to analyse least squares problems with linear and quadratic constraints. A numerical algorithm for the computation of the weighted pseudoinverse is briefly described.
We derive a Newton method for computing the best rank-(r 1 , r 2 , r 3) approximation of a given J × K × L tensor A. The problem is formulated as an approximation problem on a product of Grassmann manifolds. Incorporating the manifold structure into Newton's method ensures that all iterates generated by the algorithm are points on the Grassmann manifolds. We also introduce a consistent notation for matricizing a tensor, for contracted tensor products and some tensor-algebraic manipulations, which simplify the derivation of the Newton equations and enable straightforward algorithmic implementation. Experiments show a quadratic convergence rate for the Newton-Grassmann algorithm.
We consider an inverse heat conduction problem, the sideways heat equation, which is a model of a problem, where one wants to determine the temperature on both sides of a thick wall, but where one side is inaccessible to measurements. Mathematically it is formulated as a Cauchy problem for the heat equation in a quarter plane, with data given along the line x = 1, where the solution is wanted for 0 ≤ x < 1.The problem is ill-posed, in the sense that the solution (if it exists) does not depend continuously on the data. We consider stabilizations based on replacing the time derivative in the heat equation by wavelet-based approximations or a Fourier-based approximation. The resulting problem is an initial value problem for an ordinary differential equation, which can be solved by standard numerical methods, e.g., a Runge-Kutta method.We discuss the numerical implementation of Fourier and wavelet methods for solving the sideways heat equation. Theory predicts that the Fourier method and a method based on Meyer wavelets will give equally good results. Our numerical experiments indicate that also a method based on Daubechies wavelets gives comparable accuracy. As test problems we take model equations with constant and variable coefficients. We also solve a problem from an industrial application with actual measured data.
Abstract.Two regularization methods for ill-conditioned least squares problems are studied from the point of view of numerical efficiency. The regularization methods are formulated as quadratically constrained least squares problems, and it is shown that if they are transformed into a certain standard form, very efficient algorithms can be used for their solution. New algorithms are given, both for the transformation and for the regularization methods in standard form. A comparison to previous algorithms is made and it is shown that the overall efficiency (in terms of the number of arithmetic operations) of the new algorithms is better.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.